
AntiNex - Deep Neural Networks for
Defense Documentation

Release 1.0.0

Jay Johnson

Sep 05, 2018

Contents

1 Deep Neural Networks for Defending Software Systems 1

2 What is this? 3

3 Quick Start 5
3.1 Deploy on OpenShift Container Platform . 5
3.2 Local Deployment with Docker Compose . 5
3.3 Migrate the DB . 6
3.4 Train the Django Neural Network with 99.8% Accuracy . 6
3.5 Get the Accuracy, Training and Prediction Results . 7
3.6 Make Predictions with Your New Pre-trained Neural Network . 7
3.7 Get the New Prediction Records and Results . 7

4 API Examples 9
4.1 AntiNex API Examples . 9
4.2 AntiNex Python Client within a Jupyter Notebook . 9
4.3 Using Curl . 9
4.4 Prepare a Dataset . 10
4.5 Train a Deep Neural Network with a Dataset . 38
4.6 Debugging . 45
4.7 AntiNex Stack Status . 46

5 More Included App URLs 47
5.1 Jupyter Slides on How the Analysis Works . 47
5.2 Django REST API with Swagger . 47
5.3 Django-hosted Sphinx Docs . 47
5.4 Jupyter . 48
5.5 Browse the Postgres DB with pgAdmin4 . 48

6 So why does this matter? 49

7 How does it work? 51

8 Components 53
8.1 Network Pipeline . 53
8.2 REST API . 67
8.3 AntiNex Core . 85

i

9 Additional Components 93
9.1 AntiNex Client . 93
9.2 AntiNex Utils . 96

10 API Reference 99
10.1 Deploying a Distributed AI Stack to Kubernetes on CentOS . 99
10.2 Getting Started . 100
10.3 Validate . 101
10.4 Deploy Redis and Postgres and the Nginx Ingress . 102
10.5 Start Applications . 103
10.6 Run a Database Migration . 103
10.7 Add Ingress Locations to /etc/hosts . 103
10.8 Using the Minio S3 Object Store . 104
10.9 Using the Rook Ceph Cluster . 105
10.10 Create a User . 105
10.11 Deployed Web Applications . 105
10.12 View Django REST Framework . 105
10.13 View Swagger . 105
10.14 View Jupyter . 105
10.15 View pgAdmin . 106
10.16 View Minio S3 Object Storage . 106
10.17 View Ceph . 106
10.18 View Splunk . 106
10.19 Training AI with the Django REST API . 106
10.20 Train a Deep Neural Network on Kubernetes . 107
10.21 Get the AI Job Record . 107
10.22 Get the AI Training Job Results . 107
10.23 Standalone Deployments . 107
10.24 Deploy Redis . 107
10.25 Deploy Postgres . 109
10.26 Deploy pgAdmin . 110
10.27 Deploy Django REST API . 111
10.28 Deploy Django Celery Workers . 111
10.29 Deploy AntiNex Core . 112
10.30 Deploy Jupyter . 112
10.31 Deploy Splunk . 113
10.32 Searching in Splunk . 113
10.33 Search using Spylunking . 113
10.34 Find Django REST API Logs in Splunk . 113
10.35 Find Django Celery Worker Logs in Splunk . 113
10.36 Find Core Logs in Splunk . 114
10.37 Find Jupyter Logs in Splunk . 114
10.38 Deploy Nginx Ingress . 114
10.39 View Ingress Nginx Config . 115
10.40 View a Specific Ingress Configuration . 115
10.41 Deploy Splunk . 115
10.42 Deploy Splunk-Ready Applications . 115
10.43 Create your own self-signed x509 TLS Keys, Certs and Certificate Authority with Ansible 116
10.44 Deploying Your Own x509 TLS Encryption files as Kubernetes Secrets 116
10.45 Deploy Cert Manager with Let’s Encrypt . 117
10.46 Stop the Cert Manager . 118
10.47 Troubleshooting . 118
10.48 Customize Minio and How to Troubleshoot . 118
10.49 Ceph Troubeshooting . 120

ii

10.50 AntiNex Stack Status . 124
10.51 Reset Cluster . 125
10.52 Development . 125
10.53 Testing . 125
10.54 License . 126
10.55 AntiNex on OpenShift Container Platform . 126
10.56 Source Code - ML Pipeline . 136
10.57 Source Code - Job Helpers . 138
10.58 Source Code - Django Rest Framework Serializers . 140
10.59 Source Code - Database Models . 143
10.60 Frequently Asked Questions . 144

11 Indices and tables 145

12 What AntiNex is Not 147

13 Disclaimers and Legal 149

Python Module Index 151

iii

iv

CHAPTER 1

Deep Neural Networks for Defending Software Systems

1

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

2 Chapter 1. Deep Neural Networks for Defending Software Systems

CHAPTER 2

What is this?

AntiNex is a free tool for helping anyone defend against software attacks. It helps users train highly accurate Deep
Neural Networks (dnn’s) from specialized datasets. These datasets are captured network traffic packets in the OSI
layers 2, 3, 4 and 5. Once labeled as attack and non-attack records, you can use your dnn’s for identifying attack
records across the network. With this approach, AntiNex can predict attacks on web applications like: Django, Flask,
React and Redux, Vue, and Spring with repeatable accuracies above 99.7%. By default just one AntiNex Core (core)
worker manages 100 pre-trained dnn’s in memory for making faster predictions and support for manual retraining as
needed based off new datasets.

• AntiNex core accuracy scores

• Jupyter notebook for how it works without any of the AntiNex components as proof of the methodology

• Jupyter notebook for using a pre-trained dnn to make new predictions with AntiNex

AntiNex is a python 3 multi-tenant framework for running a data pipeline for building, training, scoring and refining
dnn’s. Once trained, dnn’s can be loaded into the core for making predictions in near-realtime as the models have al-
ready been tuned and pre-trained. The initial focus of AntiNex was to create AI models to defend web applications, but
it makes predictions with classification (used for labeling attack vs non-attack records) or regression (like predicting
the closing price of a stock) datasets.

3

https://github.com/jay-johnson/antinex-core/#antinex-core
https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Protecting-Django.ipynb
https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.ipynb
https://en.wikipedia.org/wiki/Statistical_classification
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/0d280216e3697f0d2cf7456095e37df64be73040/tests/scaler-full-django-antinex-simple.json#L109-L120
https://en.wikipedia.org/wiki/Regression_analysis
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/0d280216e3697f0d2cf7456095e37df64be73040/tests/scaler-regression.json#L5-L11

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

4 Chapter 2. What is this?

CHAPTER 3

Quick Start

3.1 Deploy on OpenShift Container Platform

Deploy AntiNex on Red Hat’s OpenShift Container Platform (version 3.9)

3.2 Local Deployment with Docker Compose

If you have docker-compose you can run the following commands to download all the containers and run the full stack
locally (the ai-core container is ~2.5 GB so it can take a couple minutes to download):

virtualenv -p python3 ~/.venvs/testing
source ~/.venvs/testing/bin/activate
pip install antinex-client
git clone https://github.com/jay-johnson/train-ai-with-django-swagger-jwt /opt/
→˓antinex/api
cd /opt/antinex/api

start all the containers from the compose.yml file: https://github.com/jay-johnson/
→˓train-ai-with-django-swagger-jwt/blob/master/compose.yml
./run-all.sh
Starting all containers with: compose.yml
Creating redis ... done
Creating jupyter ... done
Creating pgadmin ... done
Creating postgres ... done
Creating api ... done
Creating core ... done
Creating worker ... done
Creating pipeline ... done

check the containers are running
docker ps

(continues on next page)

5

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/tree/master/openshift#antinex-on-openshift-container-platform
https://hub.docker.com/r/jayjohnson/ai-core/

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

CONTAINER ID IMAGE COMMAND CREATED
→˓ STATUS PORTS NAMES
cb0d0e8e582e jayjohnson/ai-core:latest "/bin/sh -c 'cd /opt..." 33 seconds
→˓ago Up 32 seconds worker
4b0c44c99472 jayjohnson/ai-core:latest "/bin/sh -c 'cd /opt..." 33 seconds
→˓ago Up 32 seconds pipeline
bd3c488036dd jayjohnson/ai-core:latest "/bin/sh -c 'cd /opt..." 34 seconds
→˓ago Up 33 seconds core
a3093e2632b7 jayjohnson/ai-core:latest "/bin/sh -c 'cd /opt..." 34 seconds
→˓ago Up 33 seconds api
3839a0af82ec jayjohnson/pgadmin4:1.0.0 "python ./usr/local/..." 35 seconds
→˓ago Up 33 seconds 0.0.0.0:83->5050/tcp pgadmin
b4ea601f28cd redis:4.0.5-alpine "docker-entrypoint.s..." 35 seconds
→˓ago Up 33 seconds 0.0.0.0:6379->6379/tcp redis
c5eb07041509 postgres:10.2-alpine "docker-entrypoint.s..." 35 seconds
→˓ago Up 34 seconds 0.0.0.0:5432->5432/tcp postgres
9da0440864e0 jayjohnson/ai-core:latest "/opt/antinex/core/d..." 35 seconds
→˓ago Up 34 seconds jupyter

3.3 Migrate the DB

SSH into the Django container and run the migration:

docker exec -it worker bash
cd /opt/antinex/api
./run-migrations.sh
exit

3.4 Train the Django Neural Network with 99.8% Accuracy

train a deep neural network with the included antinex-datasets
ai_train_dnn.py -u root -p 123321 -f tests/only-publish-scaler-full-django.json

...

... more logs

...

2018-03-29 20:50:13,306 - ai-client - INFO - started job.id=1 job.status=initial with
→˓result.id=1 result.status=initial

...
30199 -1.0 -1.000000 -1.000000

[30200 rows x 72 columns]

Here's how to watch what the containers are doing:
AntiNex Core:
docker logs -f core
AntiNex REST API:
docker logs -f api
AntiNex REST API Celery Worker:
docker logs -f worker

6 Chapter 3. Quick Start

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

3.5 Get the Accuracy, Training and Prediction Results

Return the 30,200 predicted records and accuracy scores (which were 99.826%) from in the database.

ai_get_results.py -u root -p 123321 -i 1
2018-03-29 20:52:26,348 - ai-client - INFO - creating client user=root url=http://
→˓localhost:8010 result_id=1
2018-03-29 20:52:26,349 - ai-client - INFO - loading request in result_id=1
2018-03-29 20:52:26,360 - ai-client - INFO - log in user=root url=http://
→˓localhost:8010/api-token-auth/ ca_file=None cert=None
2018-03-29 20:52:30,876 - ai-client - INFO - accuracy=99.82615894039735 num_
→˓results=30200
2018-03-29 20:52:30,876 - ai-client - INFO - done getting result.id=1

3.6 Make Predictions with Your New Pre-trained Neural Network

Note: this is using the same HTTP Request JSON dictionary as the initial training, but this time the AntiNex Core will
reuse the pre-trained deep neural network for making new predictions.

ai_train_dnn.py -u root -p 123321 -f tests/only-publish-scaler-full-django.json

...

30199 -1.0 -1.000000 -1.000000

[30200 rows x 72 columns]

3.7 Get the New Prediction Records and Results

ai_get_results.py -u root -p 123321 -i 2

3.5. Get the Accuracy, Training and Prediction Results 7

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

8 Chapter 3. Quick Start

CHAPTER 4

API Examples

4.1 AntiNex API Examples

Here are a few ways to learn about the AntiNex API.

4.2 AntiNex Python Client within a Jupyter Notebook

Here is how to use the antinex-client for training and using a pre-trained Deep Neural Network to make predictions:

https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.
ipynb

4.2.1 More Jupyter Links

Login to the Notebook with admin:

http://localhost:8888/notebooks/AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.ipynb

Presentation Slides running in the Jupyter container (with arrow keys for navigation):

http://localhost:8890/Slides-AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.slides.html#/

4.3 Using Curl

4.3.1 Login a User

This will get the JWT token for a user. In this example it is the only user on an initial system root:

9

https://github.com/jay-johnson/antinex-client
https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.ipynb
https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.ipynb
http://localhost:8888/notebooks/AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.ipynb
http://localhost:8890/Slides-AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.slides.html#/

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

curl -s -X POST \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
-d '{ "username": "root", "password": "123321" }' \
'http://0.0.0.0:8010/api-token-auth/'

{"token":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJ1c2VyX2lkIjoxLCJ1c2VybmFtZSI6InJvb3QiLCJleHAiOjE1MjI0MjM0NzEsImVtYWlsIjoicm9vdEBlbWFpbC5jb20ifQ.
→˓LBfDvnoG5ilLWgB7lg6EWuR4QkspppF9NHy7oyCmh1s"}

If you want to store the token in a simple variable like token use:

token=$(curl -s -X POST \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
-d '{ "username": "root", "password": "123321" }' \
'http://0.0.0.0:8010/api-token-auth/' \
| sed -e 's/"/ /g' | awk '{print $4}')

echo $token
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJ1c2VyX2lkIjoxLCJ1c2VybmFtZSI6InJvb3QiLCJleHAiOjE1MjI0MjM2MDQsImVtYWlsIjoicm9vdEBlbWFpbC5jb20ifQ.
→˓SdQBLTFvA4qQqKsCyU4Quu2b5VLDjt3QO1b29njfl48

4.4 Prepare a Dataset

To use these examples please clone the Network Pipeline Datasets repository locally:

git clone https://github.com/jay-johnson/network-pipeline-datasets /opt/antinex/
→˓datasets

You can also use the AntiNex Datasets repository if you want, they assume you want to build a dataset with the
included OWASP fuzzing attack data captured during a ZAP attack simulation in with your own captured CSV files.

4.4.1 Protecting Django with a Deep Neural Network

This guide is a walkthrough for preparing and training a deep neural network for defending Django application servers.
The accuracy is currently 70% without tuning the DNN or adding in actual exploits or sql-injection attacks into the
attack datasets.

In the future I am looking to extend the full datasets to include the TCP payload data
stream (hex bytes) for sentiment analysis using an embedding Keras layer (https://blog.keras.io/
using-pre-trained-word-embeddings-in-a-keras-model.html). I imagine deserialized payloads will only increase the
default accuracy, but it is only an assumption for now.

Setup

1. Run these commands to clone the repositories to the same directories for making debugging easier for all users.

mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/train-ai-with-django-swagger-jwt.git /
→˓opt/antinex/api

(continues on next page)

10 Chapter 4. API Examples

https://github.com/jay-johnson/network-pipeline-datasets
https://github.com/jay-johnson/antinex-datasets
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

git clone https://github.com/jay-johnson/network-pipeline-datasets.git /opt/
→˓antinex/datasets
git clone https://github.com/jay-johnson/antinex-datasets.git /opt/antinex/
→˓antinex-datasets

2. Start the REST API

If the REST API is not running, please start it in a new terminal so it can process the prepare and training
requests.

cd /opt/antinex/api
source ~/.venvs/venvdrfpipeline/bin/activate
./install.sh
./start.sh

(Optional) Prepare Attack Dataset

If you want to prepare your own attack dataset run these commands with the REST API running locally:

source ~/.venvs/venvdrfpipeline/bin/activate
export TEST_DATA=/opt/antinex/antinex-datasets/v1/webapps/django/configs/django-
→˓attack-prepare-v1.json
/opt/antinex/api/tests/build-new-dataset.py

Check the files were updated:

ls -l /opt/antinex/antinex-datasets/v1/webapps/django/inputs/attack/
total 5088
-rw-rw-r-- 1 jay jay 2144 Feb 15 09:22 cleaned_v1_django_attack_metadata.json
-rw-rw-r-- 1 jay jay 2455 Feb 15 09:22 fulldata_v1_django_attack_metadata.json
-rw-rw-r-- 1 jay jay 1131875 Feb 15 09:22 v1_django_cleaned_attack.csv
-rw-rw-r-- 1 jay jay 4064695 Feb 15 09:22 v1_django_full_attack.csv

(Optional) Prepare Full Dataset

If you want to prepare your own full dataset run these commands with the REST API running locally:

source ~/.venvs/venvdrfpipeline/bin/activate
export TEST_DATA=/opt/antinex/antinex-datasets/v1/webapps/django/configs/django-
→˓prepare-v1.json
/opt/antinex/api/tests/build-new-dataset.py

Confirm Dataset is Ready

/opt/antinex/antinex-datasets/tools/describe-v1-training.py /opt/antinex/antinex-
→˓datasets/v1/webapps/django/training-ready/v1_django_cleaned.csv

Hopefully your dataset has both attack and non-attack records like:

2018-02-15 09:23:23,963 - describe-training-data - INFO - total records=30200
→˓attack=9000 nonattack=21200 percent_attack=29.80% percent_nonattack=70.20%

What you don’t want to see is this in the output:

4.4. Prepare a Dataset 11

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

2018-02-15 08:47:41,389 - describe-training-data - INFO - total records=21200
→˓attack=0 nonattack=21200 percent_attack=0.00% percent_nonattack=100.00%

That means the prepare step failed to add the attack data into the dataset correctly. Please go back to the Prepare
Dataset step and review paths to the files are correct.

Train Dataset

source ~/.venvs/venvdrfpipeline/bin/activate
export TEST_DATA=/opt/antinex/antinex-datasets/v1/webapps/django/configs/django-train-
→˓v1.json
/opt/antinex/api/tests/create-keras-dnn.py

From the logs taken during creation of this doc, the model is 70% accurate at predicting attack records.

/opt/antinex/api/tests/create-keras-dnn.py INFO:create-keras-dnn:Logging in user
url=http://localhost:8010/api-token-auth/ INFO:create-keras-dnn:logged in user=root
token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyX2lkIjoxLCJ1c2VybmFtZSI6InJvb3QiLCJleHAiOjE1MTg3MTYwMzksImVtYWlsIjoicm9vdEBlbWFpbC5jb20ifQ.nvFa1_GS4G4A7yLz4zaX5pf_TLrTxfRwE4AYf5l-
32Y INFO:create-keras-dnn:building post data INFO:create-keras-dnn:Running ML Job url=http://localhost:8010/ml/
test_data={‘csv_file’: ‘/opt/antinex/antinex-datasets/v1/webapps/django/training-ready/v1_django_cleaned.csv’,
‘meta_file’: ‘/opt/antinex/antinex-datasets/v1/webapps/django/training-ready/cleaned_v1_django_metadata.json’,
‘title’: ‘Django - Keras DNN - Dataset v1’, ‘desc’: ‘Training Django DNN using Attack and Non-attack data
captured using the network-pipeline’, ‘ds_name’: ‘cleaned’, ‘algo_name’: ‘dnn’, ‘ml_type’: ‘keras’, ‘pre-
dict_feature’: ‘label_value’, ‘training_data’: ‘{}’, ‘pre_proc’: ‘{}’, ‘post_proc’: ‘{}’, ‘meta_data’: ‘{}’, ‘version’:
1} INFO:create-keras-dnn:SUCCESS - Post Response status=201 reason=Created INFO:create-keras-dnn:{‘job’:
{‘id’: 14, ‘user_id’: 1, ‘user_name’: ‘root’, ‘title’: ‘Django - Keras DNN - Dataset v1’, ‘desc’: ‘Training Django
DNN using Attack and Non-attack data captured using the network-pipeline’, ‘ds_name’: ‘cleaned’, ‘algo_name’:
‘dnn’, ‘ml_type’: ‘keras’, ‘status’: ‘initial’, ‘control_state’: ‘active’, ‘predict_feature’: ‘label_value’, ‘training_data’:
{}, ‘pre_proc’: {}, ‘post_proc’: {}, ‘meta_data’: {}, ‘tracking_id’: ‘ml_befd247b-7163-4909-87d3-7e43189471a3’,
‘version’: 1, ‘created’: ‘2018-02-15 17:28:59’, ‘updated’: ‘2018-02-15 17:28:59’, ‘deleted’: ‘’}, ‘results’: {‘id’:
10, ‘user_id’: 1, ‘user_name’: ‘root’, ‘job_id’: 14, ‘status’: ‘finished’, ‘version’: 1, ‘acc_data’: {‘accuracy’:
70.9602648927676}, ‘error_data’: None, ‘model_json’: ‘{“class_name”: “Sequential”, “config”: [{“class_name”:
“Dense”, “config”: {“name”: “dense_1”, “trainable”: true, “batch_input_shape”: [null, 68], “dtype”: “float32”,
“units”: 8, “activation”: “relu”, “use_bias”: true, “kernel_initializer”: {“class_name”: “RandomUniform”,
“config”: {“minval”: -0.05, “maxval”: 0.05, “seed”: null}}, “bias_initializer”: {“class_name”: “Zeros”, “con-
fig”: {}}, “kernel_regularizer”: null, “bias_regularizer”: null, “activity_regularizer”: null, “kernel_constraint”:
null, “bias_constraint”: null}}, {“class_name”: “Dense”, “config”: {“name”: “dense_2”, “trainable”: true,
“units”: 6, “activation”: “relu”, “use_bias”: true, “kernel_initializer”: {“class_name”: “RandomUniform”,
“config”: {“minval”: -0.05, “maxval”: 0.05, “seed”: null}}, “bias_initializer”: {“class_name”: “Zeros”, “con-
fig”: {}}, “kernel_regularizer”: null, “bias_regularizer”: null, “activity_regularizer”: null, “kernel_constraint”:
null, “bias_constraint”: null}}, {“class_name”: “Dense”, “config”: {“name”: “dense_3”, “trainable”: true,
“units”: 1, “activation”: “sigmoid”, “use_bias”: true, “kernel_initializer”: {“class_name”: “RandomUniform”,
“config”: {“minval”: -0.05, “maxval”: 0.05, “seed”: null}}, “bias_initializer”: {“class_name”: “Zeros”, “con-
fig”: {}}, “kernel_regularizer”: null, “bias_regularizer”: null, “activity_regularizer”: null, “kernel_constraint”:
null, “bias_constraint”: null}}], “keras_version”: “2.1.4”, “backend”: “tensorflow”}’, ‘model_weights’:
{‘weights’: ‘[[[0.1209325939,0.125004366,0.04392628,0.0058005759,0.0283837207,0.1084360257,-
0.0221137945,0.1256226152],[0.0659536794,0.0419033654,0.0170708448,-0.0357947014,0.0545291603,0.0852750689,-
0.0538051911,0.0699182898],[-0.1545251906,0.1111956462,-0.0147213368,0.0731624961,0.0864041299,-
0.0017828628,-0.0178274736,0.1216073707],[0.1336804777,0.1023893878,0.0170907527,0.0518929921,0.0966836065,0.1597969532,0.0217716675,0.085526742],[0.1376502961,0.0593057014,0.0694345012,-
0.0378300808,-0.0057742135,0.0791756362,0.0235338192,0.0824202821],[0.1233218759,0.0594531633,-
0.0086939791,-0.0387902856,-0.0360716954,0.0850752816,-0.0114007629,0.0921288431],[-
0.1866215467,0.0660640672,-0.0012092546,0.0663910806,0.0470964499,-0.0053454894,-
0.0322002359,0.1119380593],[-0.2092835754,0.0618410148,0.0634177029,0.0136457058,0.0184208602,-

12 Chapter 4. API Examples

INFO:create-keras-dnn:Logging

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

0.0168401636,-0.0061000162,0.0907672495],[-0.1857144684,0.1216576323,0.0256078299,0.0622631498,0.0746099502,-
0.0211249851,-0.058073774,0.0694563985],[-0.1634339541,0.0696025267,0.0837683603,0.092234768,0.0956235006,-
0.0282980427,-0.040868368,0.113351725],[-0.1704672724,0.0691201314,0.071548,0.069260262,0.1131449491,-
0.0108540468,-0.0425567217,0.0640222654],[-0.2344770879,0.0428572707,0.0793405771,0.0114616835,0.0313309282,0.0125392843,0.0246058684,0.0830053911],[-
0.2056925297,0.0455387048,0.0595687404,0.0481434427,0.0567863956,-0.0198212601,0.0394698866,0.1153029948],[-
0.1900539547,0.0648706928,0.0755348429,0.0531642176,0.0225196443,-0.037876796,-
0.050964918,0.1065156162],[-0.1578101218,0.0851738676,0.080335848,0.1033686772,0.0672588199,-
0.0466286503,0.0274061691,0.1454075873],[-0.1649408489,0.1129061654,0.0413498543,0.0406241789,0.0480666906,-
0.0626311898,-0.0147714363,0.1095488593],[-0.1902400851,0.0546266772,-0.0002129045,0.081249468,0.0261988528,-
0.0456862338,0.033373639,0.1446813047],[-0.2027439624,0.1166701987,0.0509505421,0.0388729684,0.0726077035,-
0.0771305785,0.0307749175,0.0881667733],[-0.183378011,0.0356091969,0.0145586552,0.0244816709,0.0284536369,-
0.0071689375,-0.0315265507,0.1486145407],[-0.1512038261,0.0764901713,0.061774157,0.0451634862,0.062191762,-
0.0525121838,0.0302008335,0.0902092978],[-0.2147508562,0.1103100851,0.017692728,0.0237773284,0.051074788,-
0.0431679115,0.0140604237,0.0951612145],[-0.1971089989,0.0693886876,0.0808551386,0.0206196532,0.0207697973,-
0.039527256,-0.0105302734,0.0831609368],[-0.2245272845,0.1265042126,0.0620332398,0.0791124329,0.0703641251,-
0.0618047714,-0.0481486395,0.1099268496],[-0.1919761449,0.1043844149,0.028273426,0.0244386699,0.0346066169,-
0.0108972676,-0.0562972091,0.1470609605],[-0.1688121408,0.082510218,0.0394482091,0.0875071362,0.1120331734,-
0.0286579132,-0.0526521802,0.0697672367],[-0.1516744047,0.0463477261,0.0772118047,0.0861110315,0.0297314562,-
0.0423166379,-0.006591965,0.0826482922],[-0.2255488038,0.1261228472,0.0011998075,0.0771774799,0.0211141836,-
0.0571117215,0.0122114196,0.1291222423],[-0.2126398236,0.1168462709,0.0215776451,0.0146405725,0.1047314554,-
0.0019828572,-0.000542541,0.0922133848],[0.2239516675,-0.1272274554,-0.0545392334,-0.0690253899,-
0.0240141228,0.0290964283,-0.0048073386,-0.1407266706],[-0.1601528823,0.0873816535,0.0222081486,0.0657906458,0.0444654338,-
0.0557228811,0.0258848574,0.1467054784],[0.1103282571,0.062621966,-0.0022228661,0.0238575842,0.0446507819,0.0041218554,-
0.009616375,0.0077553303],[-0.190007925,0.0701109022,-0.0119564654,0.0722162873,0.0221073441,-
0.0255252719,-0.0031145217,0.1183288619],[-0.2136628032,0.0534639172,0.0714060888,0.0613537244,0.0842673779,-
0.0301567074,0.0307384171,0.0729675815],[-0.1955242753,0.0495460741,0.0524940416,0.0604530908,0.0595010929,0.0166093316,0.0391650833,0.0827598944],[-
0.0501433276,0.1038881019,0.0417513065,0.0355237499,0.0351028442,-0.0003712648,-
0.0190300811,0.0249827243],[-0.1487564296,0.1013090238,0.0214297064,0.0933733582,0.0616822541,-
0.0710285828,-0.0045771608,0.1217406169],[-0.1543573439,0.0395659693,0.030846579,0.0086379368,0.0861991048,-
0.048596736,-0.0271895695,0.1182741746],[-0.1961124837,0.0571020655,0.0076962849,0.0844913498,0.0193723273,0.0068046544,0.0302888621,0.143293947],[-
0.0618059374,0.1257505566,0.0142706381,0.1050991416,0.0157455113,-0.0454091579,-
0.0202189703,0.0501390435],[-0.2188960463,0.0440853648,0.07568717,0.0457809009,0.0491918027,-
0.0327213667,-0.0431831405,0.1276204884],[0.1394346952,-0.088656649,-0.0315131843,-0.0401459411,-
0.0437365025,0.0486980379,0.0174318217,-0.0507184826],[-0.1698808372,0.0357401222,0.0317347683,0.0144515438,0.0194635,0.0180209279,-
0.0143435514,0.0795696303],[-0.06071667,-0.0370089039,-0.0037398755,0.0016650554,-0.0761372149,-
0.0823373273,-0.0147782043,-0.0841278732],[0.0316180326,-0.0783421397,0.000754284,-
0.0383572131,-0.0244521741,-0.0295800623,-0.0005746271,-0.0404013805],[-0.0592732318,-
0.0370828509,0.0262605324,0.0704324692,0.006007982,-0.117112644,-0.0359724984,0.011283231],[-
0.0184435453,-0.0733112022,-0.0283645988,0.0459322594,-0.0326308981,-0.0342220962,0.0310261045,-
0.1323656887],[-0.0456168354,0.0782427266,0.057690192,0.0134688364,0.0762039647,-0.015021774,-
0.0588690341,0.1178085133],[-0.2152218074,0.0512532629,-0.0107616447,0.0344684459,0.0744112581,0.0065470482,-
0.0018064472,0.1076126173],[-0.1873236597,0.1053858474,-0.011723455,0.058383096,0.1098771915,-
0.0099292547,-0.0258859675,0.0824473128],[-0.1549893022,0.0844767764,0.0727496445,0.0866250396,0.0313318856,-
0.0712586939,0.011944362,0.1336840689],[-0.2329286635,0.1031851396,0.0821548253,0.0666918531,0.0968727544,-
0.0197768845,0.0252549183,0.0636012107],[-0.216961056,0.0476008765,0.041463919,0.0264160633,0.0959576741,-
0.0256117992,-0.0261161607,0.0812392458],[-0.1800720841,0.0473946743,0.0632657334,0.0181837026,0.0440427177,-
0.0560101122,-0.0301355477,0.1441762149],[-0.0096860044,-0.0820260122,-0.0727077052,-0.0164042395,-
0.0778253227,-0.0372423194,-0.2164034247,-0.0453402027],[-0.2012402564,0.0422893129,0.0804941952,0.09306252,0.1128023267,-
0.0451305024,-0.0048267297,0.0649067611],[-0.2305155843,0.0032782811,-0.0235605519,-0.0537962541,-
0.0118097244,-0.0141736846,0.1753456295,0.0044183824],[-0.2079010457,0.069323428,0.0517042466,0.0940786377,-
0.0039390367,-0.0135685029,-0.0057561048,0.0483344011],[-0.179656595,0.0572441481,0.0705757067,0.0079024527,0.0245193392,-
0.0251601636,0.0155755458,0.0752719566],[-0.1713959128,0.1208590493,0.0346451364,0.0616195463,0.0427664891,0.0182297006,-
0.0133397086,0.1184593365],[-0.2043197453,0.0445172973,0.0081551857,0.092943117,0.0198938642,-
0.0723016635,0.0256206822,0.0992775932],[-0.2159956694,0.0412812345,0.0545012057,0.0114885671,0.0877385288,-

4.4. Prepare a Dataset 13

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

0.0408159904,0.008009661,0.0881702825],[-0.1577915996,0.0643116087,0.0129699642,0.028255403,0.1068808511,-
0.0763266757,0.0346705541,0.0588488467],[-0.2040084004,0.0085537154,-0.0356605425,-
0.0487324521,0.0015256398,-0.0052802409,0.1076657921,-0.0199613888],[-0.2131965607,-0.0604146346,-
0.0845651999,0.0071733561,-0.0342927612,-0.0888390467,-0.0313468054,-0.0435473919],[-
0.0329419039,0.0499187671,0.0159879029,0.0226416737,0.0572009087,0.0169953778,0.0014623989,-
0.059061747],[-0.2327010036,0.1027743742,-0.0122413756,0.0495935939,0.0280871764,-0.0538110025,-
0.0385680757,0.123318933],[0.0028765725,-0.003429034,0.046994295,0.0192156862,-0.0064633554,-
0.0241745599,-0.0367736556,0.0160626136],[-0.0068317289,0.0291511118,0.0879879147,0.0794397742,0.05882008,-
0.0122352736,-0.0035967014,-0.0127760237]],[0.1892332435,-0.0836044699,-0.0343620554,-
0.0564836971,-0.0631505176,0.0272518657,0.0095205978,-0.1045202538],[[0.1019221023,-
0.0305945147,-0.0359275229,0.1524256468,-0.0245757345,0.149545297],[0.0477291718,-
0.0069747292,0.0017543581,-0.0294865649,-0.0035721776,-0.0105535956],[0.0457640737,0.0222507585,-
0.0189340338,0.0176823959,0.0232398938,0.1038072333],[-0.0229437519,-0.0037464558,-
0.0406899974,0.0335939266,-0.0280832294,-0.035844963],[0.0157823972,-0.0069473935,-
0.0812087357,0.0187359527,0.0143456571,0.0173410792],[-0.0285115037,0.0277708899,-
0.0401631221,0.012221084,-0.0175570287,0.1729588807],[-0.0449816212,0.0595379509,-
0.0334494524,0.1174537018,-0.0340393223,-0.0202259049],[-0.001982389,0.008182928,-
0.0544667765,-0.0103572421,-0.0074457065,-0.0234164968]],[0.9318162203,-0.0069479314,-
0.1054181308,1.2725764513,1.38625741,-0.0264722481],[[-0.2285993248],[-0.0322982036],[-0.0067237676],[-
0.3306575119],[-0.9310822487],[-0.0148510356]],[-1.0206410885]]’}, ‘acc_image_file’: ‘/me-
dia/sf_shared/accuracy_job_14_result_10.png’, ‘created’: ‘2018-02-15 17:30:21’, ‘updated’: ‘2018-02-15 17:30:22’,
‘deleted’: ‘’}}

Get the Deep Neural Network Accuracy, JSON and Weights

This will display all the recent training runs in a list sorted by newest.

/opt/antinex/api/tests/get-recent-results.py

Here’s the training node in the list from the run above (yours will look a little different):

{
"acc_data": {

"accuracy": 70.9602648927676
},
"acc_image_file": "/media/sf_shared/accuracy_job_14_result_10.png",
"created": "2018-02-15 17:30:21",
"deleted": "",
"error_data": null,
"id": 10,
"job_id": 14,
"model_json": "{\"class_name\": \"Sequential\", \"config\": [{\"class_name\": \

→˓"Dense\", \"config\": {\"name\": \"dense_1\", \"trainable\": true, \"batch_input_
→˓shape\": [null, 68], \"dtype\": \"float32\", \"units\": 8, \"activation\": \"relu\",
→˓ \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"RandomUniform\", \
→˓"config\": {\"minval\": -0.05, \"maxval\": 0.05, \"seed\": null}}, \"bias_
→˓initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_regularizer\":
→˓null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_
→˓constraint\": null, \"bias_constraint\": null}}, {\"class_name\": \"Dense\", \
→˓"config\": {\"name\": \"dense_2\", \"trainable\": true, \"units\": 6, \"activation\
→˓": \"relu\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \
→˓"RandomUniform\", \"config\": {\"minval\": -0.05, \"maxval\": 0.05, \"seed\": null}}
→˓, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_
→˓regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \
→˓"kernel_constraint\": null, \"bias_constraint\": null}}, {\"class_name\": \"Dense\",
→˓ \"config\": {\"name\": \"dense_3\", \"trainable\": true, \"units\": 1, \
→˓"activation\": \"sigmoid\", \"use_bias\": true, \"kernel_initializer\": {\"class_
→˓name\": \"RandomUniform\", \"config\": {\"minval\": -0.05, \"maxval\": 0.05, \"seed\
→˓": null}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \
→˓"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\":
→˓null, \"kernel_constraint\": null, \"bias_constraint\": null}}], \"keras_version\":
→˓\"2.1.4\", \"backend\": \"tensorflow\"}",

(continues on next page)

14 Chapter 4. API Examples

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

"model_weights": {
"weights": "[[[0.1209325939,0.125004366,0.04392628,0.0058005759,0.0283837207,

→˓0.1084360257,-0.0221137945,0.1256226152],[0.0659536794,0.0419033654,0.0170708448,-0.
→˓0357947014,0.0545291603,0.0852750689,-0.0538051911,0.0699182898],[-0.1545251906,0.
→˓1111956462,-0.0147213368,0.0731624961,0.0864041299,-0.0017828628,-0.0178274736,0.
→˓1216073707],[0.1336804777,0.1023893878,0.0170907527,0.0518929921,0.0966836065,0.
→˓1597969532,0.0217716675,0.085526742],[0.1376502961,0.0593057014,0.0694345012,-0.
→˓0378300808,-0.0057742135,0.0791756362,0.0235338192,0.0824202821],[0.1233218759,0.
→˓0594531633,-0.0086939791,-0.0387902856,-0.0360716954,0.0850752816,-0.0114007629,0.
→˓0921288431],[-0.1866215467,0.0660640672,-0.0012092546,0.0663910806,0.0470964499,-0.
→˓0053454894,-0.0322002359,0.1119380593],[-0.2092835754,0.0618410148,0.0634177029,0.
→˓0136457058,0.0184208602,-0.0168401636,-0.0061000162,0.0907672495],[-0.1857144684,0.
→˓1216576323,0.0256078299,0.0622631498,0.0746099502,-0.0211249851,-0.058073774,0.
→˓0694563985],[-0.1634339541,0.0696025267,0.0837683603,0.092234768,0.0956235006,-0.
→˓0282980427,-0.040868368,0.113351725],[-0.1704672724,0.0691201314,0.071548,0.
→˓069260262,0.1131449491,-0.0108540468,-0.0425567217,0.0640222654],[-0.2344770879,0.
→˓0428572707,0.0793405771,0.0114616835,0.0313309282,0.0125392843,0.0246058684,0.
→˓0830053911],[-0.2056925297,0.0455387048,0.0595687404,0.0481434427,0.0567863956,-0.
→˓0198212601,0.0394698866,0.1153029948],[-0.1900539547,0.0648706928,0.0755348429,0.
→˓0531642176,0.0225196443,-0.037876796,-0.050964918,0.1065156162],[-0.1578101218,0.
→˓0851738676,0.080335848,0.1033686772,0.0672588199,-0.0466286503,0.0274061691,0.
→˓1454075873],[-0.1649408489,0.1129061654,0.0413498543,0.0406241789,0.0480666906,-0.
→˓0626311898,-0.0147714363,0.1095488593],[-0.1902400851,0.0546266772,-0.0002129045,0.
→˓081249468,0.0261988528,-0.0456862338,0.033373639,0.1446813047],[-0.2027439624,0.
→˓1166701987,0.0509505421,0.0388729684,0.0726077035,-0.0771305785,0.0307749175,0.
→˓0881667733],[-0.183378011,0.0356091969,0.0145586552,0.0244816709,0.0284536369,-0.
→˓0071689375,-0.0315265507,0.1486145407],[-0.1512038261,0.0764901713,0.061774157,0.
→˓0451634862,0.062191762,-0.0525121838,0.0302008335,0.0902092978],[-0.2147508562,0.
→˓1103100851,0.017692728,0.0237773284,0.051074788,-0.0431679115,0.0140604237,0.
→˓0951612145],[-0.1971089989,0.0693886876,0.0808551386,0.0206196532,0.0207697973,-0.
→˓039527256,-0.0105302734,0.0831609368],[-0.2245272845,0.1265042126,0.0620332398,0.
→˓0791124329,0.0703641251,-0.0618047714,-0.0481486395,0.1099268496],[-0.1919761449,0.
→˓1043844149,0.028273426,0.0244386699,0.0346066169,-0.0108972676,-0.0562972091,0.
→˓1470609605],[-0.1688121408,0.082510218,0.0394482091,0.0875071362,0.1120331734,-0.
→˓0286579132,-0.0526521802,0.0697672367],[-0.1516744047,0.0463477261,0.0772118047,0.
→˓0861110315,0.0297314562,-0.0423166379,-0.006591965,0.0826482922],[-0.2255488038,0.
→˓1261228472,0.0011998075,0.0771774799,0.0211141836,-0.0571117215,0.0122114196,0.
→˓1291222423],[-0.2126398236,0.1168462709,0.0215776451,0.0146405725,0.1047314554,-0.
→˓0019828572,-0.000542541,0.0922133848],[0.2239516675,-0.1272274554,-0.0545392334,-0.
→˓0690253899,-0.0240141228,0.0290964283,-0.0048073386,-0.1407266706],[-0.1601528823,0.
→˓0873816535,0.0222081486,0.0657906458,0.0444654338,-0.0557228811,0.0258848574,0.
→˓1467054784],[0.1103282571,0.062621966,-0.0022228661,0.0238575842,0.0446507819,0.
→˓0041218554,-0.009616375,0.0077553303],[-0.190007925,0.0701109022,-0.0119564654,0.
→˓0722162873,0.0221073441,-0.0255252719,-0.0031145217,0.1183288619],[-0.2136628032,0.
→˓0534639172,0.0714060888,0.0613537244,0.0842673779,-0.0301567074,0.0307384171,0.
→˓0729675815],[-0.1955242753,0.0495460741,0.0524940416,0.0604530908,0.0595010929,0.
→˓0166093316,0.0391650833,0.0827598944],[-0.0501433276,0.1038881019,0.0417513065,0.
→˓0355237499,0.0351028442,-0.0003712648,-0.0190300811,0.0249827243],[-0.1487564296,0.
→˓1013090238,0.0214297064,0.0933733582,0.0616822541,-0.0710285828,-0.0045771608,0.
→˓1217406169],[-0.1543573439,0.0395659693,0.030846579,0.0086379368,0.0861991048,-0.
→˓048596736,-0.0271895695,0.1182741746],[-0.1961124837,0.0571020655,0.0076962849,0.
→˓0844913498,0.0193723273,0.0068046544,0.0302888621,0.143293947],[-0.0618059374,0.
→˓1257505566,0.0142706381,0.1050991416,0.0157455113,-0.0454091579,-0.0202189703,0.
→˓0501390435],[-0.2188960463,0.0440853648,0.07568717,0.0457809009,0.0491918027,-0.
→˓0327213667,-0.0431831405,0.1276204884],[0.1394346952,-0.088656649,-0.0315131843,-0.
→˓0401459411,-0.0437365025,0.0486980379,0.0174318217,-0.0507184826],[-0.1698808372,0.
→˓0357401222,0.0317347683,0.0144515438,0.0194635,0.0180209279,-0.0143435514,0.
→˓0795696303],[-0.06071667,-0.0370089039,-0.0037398755,0.0016650554,-0.0761372149,-0.
→˓0823373273,-0.0147782043,-0.0841278732],[0.0316180326,-0.0783421397,0.000754284,-0.
→˓0383572131,-0.0244521741,-0.0295800623,-0.0005746271,-0.0404013805],[-0.0592732318,-
→˓0.0370828509,0.0262605324,0.0704324692,0.006007982,-0.117112644,-0.0359724984,0.
→˓011283231],[-0.0184435453,-0.0733112022,-0.0283645988,0.0459322594,-0.0326308981,-0.
→˓0342220962,0.0310261045,-0.1323656887],[-0.0456168354,0.0782427266,0.057690192,0.
→˓0134688364,0.0762039647,-0.015021774,-0.0588690341,0.1178085133],[-0.2152218074,0.
→˓0512532629,-0.0107616447,0.0344684459,0.0744112581,0.0065470482,-0.0018064472,0.
→˓1076126173],[-0.1873236597,0.1053858474,-0.011723455,0.058383096,0.1098771915,-0.
→˓0099292547,-0.0258859675,0.0824473128],[-0.1549893022,0.0844767764,0.0727496445,0.
→˓0866250396,0.0313318856,-0.0712586939,0.011944362,0.1336840689],[-0.2329286635,0.
→˓1031851396,0.0821548253,0.0666918531,0.0968727544,-0.0197768845,0.0252549183,0.
→˓0636012107],[-0.216961056,0.0476008765,0.041463919,0.0264160633,0.0959576741,-0.
→˓0256117992,-0.0261161607,0.0812392458],[-0.1800720841,0.0473946743,0.0632657334,0.
→˓0181837026,0.0440427177,-0.0560101122,-0.0301355477,0.1441762149],[-0.0096860044,-0.
→˓0820260122,-0.0727077052,-0.0164042395,-0.0778253227,-0.0372423194,-0.2164034247,-0.
→˓0453402027],[-0.2012402564,0.0422893129,0.0804941952,0.09306252,0.1128023267,-0.
→˓0451305024,-0.0048267297,0.0649067611],[-0.2305155843,0.0032782811,-0.0235605519,-0.
→˓0537962541,-0.0118097244,-0.0141736846,0.1753456295,0.0044183824],[-0.2079010457,0.
→˓069323428,0.0517042466,0.0940786377,-0.0039390367,-0.0135685029,-0.0057561048,0.
→˓0483344011],[-0.179656595,0.0572441481,0.0705757067,0.0079024527,0.0245193392,-0.
→˓0251601636,0.0155755458,0.0752719566],[-0.1713959128,0.1208590493,0.0346451364,0.
→˓0616195463,0.0427664891,0.0182297006,-0.0133397086,0.1184593365],[-0.2043197453,0.
→˓0445172973,0.0081551857,0.092943117,0.0198938642,-0.0723016635,0.0256206822,0.
→˓0992775932],[-0.2159956694,0.0412812345,0.0545012057,0.0114885671,0.0877385288,-0.
→˓0408159904,0.008009661,0.0881702825],[-0.1577915996,0.0643116087,0.0129699642,0.
→˓028255403,0.1068808511,-0.0763266757,0.0346705541,0.0588488467],[-0.2040084004,0.
→˓0085537154,-0.0356605425,-0.0487324521,0.0015256398,-0.0052802409,0.1076657921,-0.
→˓0199613888],[-0.2131965607,-0.0604146346,-0.0845651999,0.0071733561,-0.0342927612,-
→˓0.0888390467,-0.0313468054,-0.0435473919],[-0.0329419039,0.0499187671,0.0159879029,
→˓0.0226416737,0.0572009087,0.0169953778,0.0014623989,-0.059061747],[-0.2327010036,0.
→˓1027743742,-0.0122413756,0.0495935939,0.0280871764,-0.0538110025,-0.0385680757,0.
→˓123318933],[0.0028765725,-0.003429034,0.046994295,0.0192156862,-0.0064633554,-0.
→˓0241745599,-0.0367736556,0.0160626136],[-0.0068317289,0.0291511118,0.0879879147,0.
→˓0794397742,0.05882008,-0.0122352736,-0.0035967014,-0.0127760237]],[0.1892332435,-0.
→˓0836044699,-0.0343620554,-0.0564836971,-0.0631505176,0.0272518657,0.0095205978,-0.
→˓1045202538],[[0.1019221023,-0.0305945147,-0.0359275229,0.1524256468,-0.0245757345,0.
→˓149545297],[0.0477291718,-0.0069747292,0.0017543581,-0.0294865649,-0.0035721776,-0.
→˓0105535956],[0.0457640737,0.0222507585,-0.0189340338,0.0176823959,0.0232398938,0.
→˓1038072333],[-0.0229437519,-0.0037464558,-0.0406899974,0.0335939266,-0.0280832294,-
→˓0.035844963],[0.0157823972,-0.0069473935,-0.0812087357,0.0187359527,0.0143456571,0.
→˓0173410792],[-0.0285115037,0.0277708899,-0.0401631221,0.012221084,-0.0175570287,0.
→˓1729588807],[-0.0449816212,0.0595379509,-0.0334494524,0.1174537018,-0.0340393223,-0.
→˓0202259049],[-0.001982389,0.008182928,-0.0544667765,-0.0103572421,-0.0074457065,-0.
→˓0234164968]],[0.9318162203,-0.0069479314,-0.1054181308,1.2725764513,1.38625741,-0.
→˓0264722481],[[-0.2285993248],[-0.0322982036],[-0.0067237676],[-0.3306575119],[-0.
→˓9310822487],[-0.0148510356]],[-1.0206410885]]"

(continues on next page)

4.4. Prepare a Dataset 15

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

},
"status": "finished",
"updated": "2018-02-15 17:30:22",
"user_id": 1,
"user_name": "root",
"version": 1

}

4.4.2 Protecting Flask RESTplus with a Deep Neural Network

This guide is a walkthrough for preparing and training a deep neural network for defending Flask RESTplus application
servers. The accuracy is currently 89% without tuning the DNN or adding in actual exploits or sql-injection attacks
into the attack datasets. Please note the non-attack training data is recorded from a multi-user simulation against
a Django application server. Sorry I have not had enough free time to create a true Flask non-attack dataset (PRs
welcome though!).

In the future I am looking to extend the full datasets to include the TCP payload data
stream (hex bytes) for sentiment analysis using an embedding Keras layer (https://blog.keras.io/
using-pre-trained-word-embeddings-in-a-keras-model.html). I imagine deserialized payloads will only increase the
default accuracy, but it is only an assumption for now.

Setup

1. Run these commands to clone the repositories to the same directories for making debugging easier for all users.

mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/train-ai-with-django-swagger-jwt.git /
→˓opt/antinex/api
git clone https://github.com/jay-johnson/network-pipeline-datasets.git /opt/
→˓antinex/datasets
git clone https://github.com/jay-johnson/antinex-datasets.git /opt/antinex/
→˓antinex-datasets

2. Start the REST API

If the REST API is not running, please start it in a new terminal so it can process the prepare and training
requests.

cd /opt/antinex/api
source ~/.venvs/venvdrfpipeline/bin/activate
./install.sh
./start.sh

(Optional) Prepare Attack Dataset

If you want to prepare your own attack dataset run these commands with the REST API running locally:

source ~/.venvs/venvdrfpipeline/bin/activate
export TEST_DATA=/opt/antinex/antinex-datasets/v1/webapps/flask-restplus/configs/
→˓flask-attack-prepare-v1.json
/opt/antinex/api/tests/build-new-dataset.py

Check the files were updated:

16 Chapter 4. API Examples

https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

ls -l /opt/antinex/antinex-datasets/v1/webapps/flask-restplus/inputs/attack/
total 1052
-rw-rw-r-- 1 jay jay 2088 Feb 15 10:54 cleaned_v1_flask_attack_metadata.json
-rw-rw-r-- 1 jay jay 2359 Feb 15 10:54 fulldata_v1_flask_attack_metadata.json
-rw-rw-r-- 1 jay jay 322110 Feb 15 10:54 v1_flask_cleaned_attack.csv
-rw-rw-r-- 1 jay jay 745217 Feb 15 10:54 v1_flask_full_attack.csv

(Optional) Prepare Full Dataset

If you want to prepare your own full dataset run these commands with the REST API running locally:

source ~/.venvs/venvdrfpipeline/bin/activate
export TEST_DATA=/opt/antinex/antinex-datasets/v1/webapps/flask-restplus/configs/
→˓flask-prepare-v1.json
/opt/antinex/api/tests/build-new-dataset.py

Confirm Dataset is Ready

/opt/antinex/antinex-datasets/tools/describe-v1-training.py /opt/antinex/antinex-
→˓datasets/v1/webapps/flask-restplus/training-ready/v1_flask_cleaned.csv

Hopefully your dataset has both attack and non-attack records like:

2018-02-15 10:57:05,417 - describe-training-data - INFO - total records=23800
→˓attack=2600 nonattack=21200 percent_attack=10.92% percent_nonattack=89.08%

What you don’t want to see is this in the output:

2018-02-15 08:47:41,389 - describe-training-data - INFO - total records=21200
→˓attack=0 nonattack=21200 percent_attack=0.00% percent_nonattack=100.00%

That means the prepare step failed to add the attack data into the dataset correctly. Please go back to the Prepare
Dataset step and review paths to the files are correct.

Train Dataset

source ~/.venvs/venvdrfpipeline/bin/activate
export TEST_DATA=/opt/antinex/antinex-datasets/v1/webapps/flask-restplus/configs/
→˓flask-train-v1.json
/opt/antinex/api/tests/create-keras-dnn.py

From the logs taken during creation of this doc, the model is 89% accurate at predicting attack records.

/opt/antinex/api/tests/create-keras-dnn.py INFO:create-keras-dnn:Logging in user
url=http://localhost:8010/api-token-auth/ INFO:create-keras-dnn:logged in user=root to-
ken=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyX2lkIjoxLCJ1c2VybmFtZSI6InJvb3QiLCJleHAiOjE1MTg3MjEzNDUsImVtYWlsIjoicm9vdEBlbWFpbC5jb20ifQ.uLodJTG_iIZvqMPepKUrCtF4JduVxLDNrMmelpY66yc
INFO:create-keras-dnn:building post data INFO:create-keras-dnn:Running ML Job url=http://localhost:8010/ml/
test_data={‘csv_file’: ‘/opt/antinex/antinex-datasets/v1/webapps/flask-restplus/training-
ready/v1_flask_cleaned.csv’, ‘meta_file’: ‘/opt/antinex/antinex-datasets/v1/webapps/flask-restplus/training-
ready/cleaned_v1_flask_metadata.json’, ‘title’: ‘Flask RESTplus - Keras DNN - Dataset v1’, ‘desc’: ‘Training
Flask RESTplus DNN using Attack and Non-attack data captured using the network-pipeline’, ‘ds_name’: ‘cleaned’,
‘algo_name’: ‘dnn’, ‘ml_type’: ‘keras’, ‘predict_feature’: ‘label_value’, ‘training_data’: ‘{}’, ‘pre_proc’: ‘{}’,

4.4. Prepare a Dataset 17

INFO:create-keras-dnn:Logging

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

‘post_proc’: ‘{}’, ‘meta_data’: ‘{}’, ‘version’: 1} INFO:create-keras-dnn:SUCCESS - Post Response status=201
reason=Created INFO:create-keras-dnn:{‘job’: {‘id’: 15, ‘user_id’: 1, ‘user_name’: ‘root’, ‘title’: ‘Flask RESTplus
- Keras DNN - Dataset v1’, ‘desc’: ‘Training Flask RESTplus DNN using Attack and Non-attack data captured
using the network-pipeline’, ‘ds_name’: ‘cleaned’, ‘algo_name’: ‘dnn’, ‘ml_type’: ‘keras’, ‘status’: ‘initial’,
‘control_state’: ‘active’, ‘predict_feature’: ‘label_value’, ‘training_data’: {}, ‘pre_proc’: {}, ‘post_proc’: {},
‘meta_data’: {}, ‘tracking_id’: ‘ml_185aadad-7df6-4f87-92f8-8d7cfe9ccaa1’, ‘version’: 1, ‘created’: ‘2018-02-15
18:57:25’, ‘updated’: ‘2018-02-15 18:57:25’, ‘deleted’: ‘’}, ‘results’: {‘id’: 11, ‘user_id’: 1, ‘user_name’: ‘root’,
‘job_id’: 15, ‘status’: ‘finished’, ‘version’: 1, ‘acc_data’: {‘accuracy’: 89.49579831932773}, ‘error_data’: None,
‘model_json’: ‘{“class_name”: “Sequential”, “config”: [{“class_name”: “Dense”, “config”: {“name”: “dense_1”,
“trainable”: true, “batch_input_shape”: [null, 68], “dtype”: “float32”, “units”: 8, “activation”: “relu”, “use_bias”:
true, “kernel_initializer”: {“class_name”: “RandomUniform”, “config”: {“minval”: -0.05, “maxval”: 0.05, “seed”:
null}}, “bias_initializer”: {“class_name”: “Zeros”, “config”: {}}, “kernel_regularizer”: null, “bias_regularizer”:
null, “activity_regularizer”: null, “kernel_constraint”: null, “bias_constraint”: null}}, {“class_name”: “Dense”,
“config”: {“name”: “dense_2”, “trainable”: true, “units”: 6, “activation”: “relu”, “use_bias”: true, “ker-
nel_initializer”: {“class_name”: “RandomUniform”, “config”: {“minval”: -0.05, “maxval”: 0.05, “seed”: null}},
“bias_initializer”: {“class_name”: “Zeros”, “config”: {}}, “kernel_regularizer”: null, “bias_regularizer”: null,
“activity_regularizer”: null, “kernel_constraint”: null, “bias_constraint”: null}}, {“class_name”: “Dense”,
“config”: {“name”: “dense_3”, “trainable”: true, “units”: 1, “activation”: “sigmoid”, “use_bias”: true, “ker-
nel_initializer”: {“class_name”: “RandomUniform”, “config”: {“minval”: -0.05, “maxval”: 0.05, “seed”:
null}}, “bias_initializer”: {“class_name”: “Zeros”, “config”: {}}, “kernel_regularizer”: null, “bias_regularizer”:
null, “activity_regularizer”: null, “kernel_constraint”: null, “bias_constraint”: null}}], “keras_version”:
“2.1.4”, “backend”: “tensorflow”}’, ‘model_weights’: {‘weights’: ‘[[[0.0426323749,-0.0255882181,-
0.0090597291,0.1283773184,0.0292089302,0.0025187351,0.0829728991,0.1176706031],[0.037888933,0.0087408721,0.0459016114,0.1122659445,-
0.016116729,0.0464626513,0.0540330783,0.022757668],[-0.0214296542,0.0262879357,0.0038285167,-
0.0734874904,-0.0107907392,0.0001898558,-0.1048046276,-0.0412591994],[0.007992073,-
0.0265324973,0.0369161405,0.0394662991,0.0031596741,-0.0152786113,0.0967443436,0.0810386315],[0.0589824058,0.0064139194,0.0142697673,0.1090230495,0.0537979342,0.0046058199,0.1009583548,0.0961056277],[0.0956505686,0.0055070231,-
0.0196403004,0.1306117624,0.0538136661,-0.0151381232,0.1598619968,0.1096331924],[-
0.0228838958,0.0238968544,0.0322253667,-0.0315970778,0.0328627527,0.0515150316,-0.1444948912,-
0.0172979422],[-0.0669921488,-0.0633563995,0.026413843,-0.0758443102,0.0212015193,0.0008845639,-
0.1340515614,-0.0885572657],[-0.0379409157,0.0235466771,-0.0239608623,-0.0233518947,-
0.0180600733,-0.000621935,-0.0909899473,-0.0650934204],[-0.1045127213,0.0289334524,-
0.0202295408,-0.1071161181,0.0011363167,0.0574624874,-0.1407585889,-0.1154722199],[-
0.0820850208,-0.0178494379,-0.0217043143,-0.0971601605,-0.0540295169,0.0126081835,-
0.1323711425,-0.0351396762],[-0.0396530814,-0.0489722192,-0.0246039722,-0.0223898534,-
0.0241458677,0.034281414,-0.1406630576,-0.1091260538],[-0.0556271039,-0.0563059077,-
0.0233718585,-0.0885359943,-0.0523045808,0.0029973972,-0.047497876,-0.0678029805],[-0.0830031335,-
0.0494688451,0.0220204517,-0.068020612,0.0165492371,0.0551169775,-0.0784559101,-0.0418072231],[-
0.0427264832,-0.0430617929,0.0010199838,-0.0166956335,0.0032942081,0.001454784,-0.0962905437,-
0.0894291624],[-0.0758964419,-0.0236174613,0.0260267798,-0.1116409451,-0.039193593,-0.0216977205,-
0.1275075376,-0.0769466385],[-0.0189716518,-0.0011924787,0.0378293768,-0.0616473816,-
0.0058780708,-0.0095390407,-0.0897467956,-0.0901271477],[-0.0807787329,-0.0143492874,-
0.0354749262,-0.0797566995,0.0338315442,-0.024086047,-0.0861588418,-0.0659692138],[-0.0624345131,-
0.0491259694,0.0337389037,-0.0533887483,0.0058928118,-0.035079021,-0.134863764,-0.0412503555],[-
0.0379889719,-0.0485685989,0.0187181961,-0.0228507519,-0.051875487,0.0183100309,-0.1258815378,-
0.0734021738],[-0.0277079009,0.0286247917,0.0038159075,-0.0966584384,-0.005367511,0.0266397614,-
0.1313499063,-0.0257532299],[-0.0770806,-0.0542856306,-0.000666048,-0.0634321198,0.026355302,-
0.0066100159,-0.0456909463,-0.0334356874],[-0.0904787034,-0.0271485578,0.0489063449,-
0.0324975327,-0.0418805331,0.0154382363,-0.0966121927,-0.0713369027],[-0.0432081558,-
0.0086686136,-0.0281147528,-0.0924807042,0.0139136631,-0.0166061427,-0.0506068021,-
0.0763159022],[-0.0625338033,0.0062450422,0.0534292571,-0.0707026199,-0.024397444,-0.0328290649,-
0.1001479179,-0.0974239931],[-0.0936535373,-0.0477943867,-0.0313425213,-0.1001306772,-
0.0306321867,-0.0217516664,-0.1106291041,-0.023179628],[-0.1038499326,-0.028331412,-
0.0345370658,-0.0847722739,0.0043513202,-0.0235293116,-0.1417917758,-0.1084775403],[-
0.0255202819,0.0110019408,0.0376705453,-0.0307282936,-0.0009297428,-0.0346140675,-

18 Chapter 4. API Examples

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

0.0557651855,-0.075329639],[0.0327686854,-0.0048621781,-0.0449326374,0.1063804403,0.0354809873,-
0.031704843,0.1717805862,0.0739540011],[-0.0120043308,0.0316974148,0.0294647831,-0.0407527275,-
0.0047504301,-0.0305531397,-0.0991907716,-0.0953953043],[-0.1024203598,0.099888809,-0.0079205092,-
0.0490499474,-0.0271461513,0.0822322369,0.0575119071,0.0676374361],[-0.0975352377,-0.0279858597,-
0.0375377163,-0.0733665898,0.0024956453,0.0000131985,-0.0623091795,-0.0348203406],[-
0.1044042036,-0.0493010655,0.0560958013,-0.0540509932,-0.0211698078,-0.0265545212,-0.0715102479,-
0.0359795876],[-0.0425768159,0.0305278897,-0.0213658791,-0.0220552664,-0.0028750291,0.0152840279,-
0.1093827412,-0.0265729669],[-0.0947411284,0.0571837798,0.0370233022,-0.0815027654,-
0.0462668501,0.0736624524,-0.0058687618,-0.0746894926],[-0.0609302185,0.0090621058,-
0.0419382341,-0.1110604107,-0.0119013209,-0.017867554,-0.0557432212,-0.087935932],[-
0.0381675027,0.0101275556,0.0067694304,-0.0998164713,-0.0359654427,-0.0082442584,-0.0981924981,-
0.1116829589],[-0.0741901025,0.0291563496,-0.0264984984,-0.0616867431,-0.0063055283,0.0279856529,-
0.0907634646,-0.1027278528],[-0.0758224577,0.0015842745,0.0338854305,-0.0514345653,-0.010851006,-
0.0060120882,-0.0644992739,-0.0726546496],[-0.0508742668,-0.0639033169,-0.0423267372,-
0.0164754614,0.0243874229,-0.0255884398,-0.1314629316,-0.0759309903],[0.0438570306,-
0.0348124057,-0.0189036988,0.016748948,0.0424729399,-0.0581890643,0.0896789953,0.0363361128],[-
0.0386991538,-0.0180182755,-0.0424260609,-0.1039735526,0.0112775657,0.0560146682,-
0.1352385879,-0.0222511459],[-0.035192512,-0.0047485712,0.015257326,-0.0013657424,-0.0506449156,-
0.0291663408,0.0103004025,0.0294213798],[0.0089905122,0.0350620709,0.0046768119,-0.0415131934,-
0.0150964623,0.0221417733,-0.0056831283,0.0544817522],[-0.0420532711,0.0079685589,0.0067148004,-
0.082384862,0.0022194732,-0.0165153295,-0.1248686388,-0.019711487],[-0.096077241,-0.0254066326,-
0.0540779792,-0.0449774973,-0.0033162525,0.0440527797,-0.0071636667,-0.0076389913],[0.0116391173,-
0.0320617296,-0.0108245742,0.0027867109,0.0180245712,0.0012698642,-0.099055782,-
0.0219898615],[0.00900253,0.0287133083,0.0537100956,-0.0744302124,0.0305081364,0.0016400049,-
0.0700737685,-0.0486903861],[0.0033208129,0.0157403499,-0.0253775604,-0.0587556846,0.0218016598,0.028432576,-
0.1294285953,-0.0836849883],[0.0367537104,-0.0175779108,-0.0051506036,-0.057613682,0.0313959233,-
0.0433652923,-0.0949594006,-0.0432897843],[-0.0339793079,0.0020113038,0.0124180513,-
0.0530905798,-0.0427044183,-0.0553700179,-0.1070849448,-0.0691610053],[0.0001814616,-
0.0168834105,0.0339019485,-0.0775102973,-0.0191271659,0.0216677003,-0.0656533465,-
0.1144009531],[-0.1059497893,-0.0049181273,0.0498044118,-0.0346838795,0.0164915081,0.0254156869,-
0.1205460355,-0.0772420093],[-0.0380106792,-0.0061189532,-0.0359303355,-0.0459102169,-
0.0334480405,-0.0367637649,0.0358054154,0.0131852068],[-0.0965600684,0.0022080662,-
0.0093741212,-0.033005625,-0.0194996297,0.0079977531,-0.1066729948,-0.0651928782],[-
0.0560397878,0.0328344405,-0.0274874251,0.0420479812,0.0315765962,0.0070940158,-
0.0787004307,0.0073882868],[-0.0930133164,-0.0196791496,-0.0011561333,-0.0399722718,-
0.0479589812,0.0000561367,-0.0738650635,-0.0443399698],[-0.0840743333,-0.0551205203,0.0241359416,-
0.0662114322,0.0348841324,-0.003500547,-0.125039205,-0.0998590812],[-0.0498304553,0.03142488,-
0.0002348951,-0.0582877211,0.0119131543,0.0372843482,-0.1186875254,-0.0261092521],[-
0.0891042799,-0.0493348017,0.0338282734,-0.0400045402,0.0408838838,-0.0235499088,-0.0468597487,-
0.0568073764],[-0.0808104947,-0.0333214775,-0.0042998446,-0.065806143,0.0337486975,0.0285946317,-
0.132270664,-0.0551608354],[-0.0990937799,0.0321997777,0.0339404307,-0.0641544685,0.029329313,-
0.0001243317,-0.111442402,-0.026380565],[-0.0159308631,-0.008656092,-0.0455170162,0.0365302898,-
0.0284806192,0.0253368132,-0.1148158312,-0.0022615485],[0.0044460897,0.053295508,0.0307782292,-
0.0550564155,0.0170134939,-0.0393051617,-0.1321098059,0.0248682518],[0.0363558196,-
0.0131116873,0.0325888433,0.0374935232,-0.028289672,-0.0231639612,-0.0569625199,0.0362283513],[-
0.0320892818,-0.0178287178,-0.0314985737,-0.023245478,0.0207714792,0.0148529997,-0.1123319864,-
0.0739320144],[-0.0294432193,0.0545074418,0.0186652243,-0.0806119889,0.0009009295,0.025605455,0.0006349441,-
0.0063184882],[0.0505009703,0.0361768678,0.0135121401,-0.0116158333,-0.0491209626,-0.0255839732,-
0.0957046375,-0.0473603681]],[0.0588490553,0.0163822807,-0.0064409007,0.0641452521,0.0059181629,-
0.0099197142,0.0951542407,0.0660104603],[[-0.0050316565,0.0507251173,-0.0241616126,0.0318146385,-
0.0744105875,0.0357613154],[0.0290509574,0.0377634503,-0.0239083767,0.0000599554,-
0.0120540028,0.042443905],[0.0221073218,0.0118085258,0.0258703269,0.0051663192,-0.0452455804,-
0.0262466893],[-0.0048780073,0.0732062235,-0.0393346548,-0.0642782897,0.0263430309,-
0.0082829352],[-0.0472923033,0.0224473402,-0.0167164803,0.0103773978,0.0015468168,-

4.4. Prepare a Dataset 19

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

0.0262690522],[-0.0477254875,0.0187563188,-0.0213371273,-0.0300161056,0.023460472,0.0163392462],[-
0.0863996446,0.1024220511,0.035894502,-0.0403372794,-0.0435755812,0.1845877171],[-
0.0398054905,0.0403691866,-0.0404988527,-0.0220432878,0.0178212691,0.06267111]],[-
0.0122304028,0.0925562233,0.0,-0.0065102046,-0.0187473632,0.0327210948],[[0.022001354],[-0.0505836755],[-
0.015696872],[0.0343161002],[0.0277610142],[-0.0699139088]],[-0.072642006]]’}, ‘acc_image_file’: ‘/me-
dia/sf_shared/accuracy_job_15_result_11.png’, ‘created’: ‘2018-02-15 18:58:29’, ‘updated’: ‘2018-02-15 18:58:30’,
‘deleted’: ‘’}}

Get the Deep Neural Network Accuracy, JSON and Weights

This will display all the recent training runs in a list sorted by newest.

/opt/antinex/api/tests/get-recent-results.py

Here’s the training node in the list from the run above (yours will look a little different):

{
"acc_data": {

"accuracy": 89.49579831932773
},
"acc_image_file": "/media/sf_shared/accuracy_job_15_result_11.png",
"created": "2018-02-15 18:58:29",
"deleted": "",
"error_data": null,
"id": 11,
"job_id": 15,
"model_json": "{\"class_name\": \"Sequential\", \"config\": [{\"class_name\": \

→˓"Dense\", \"config\": {\"name\": \"dense_1\", \"trainable\": true, \"batch_input_
→˓shape\": [null, 68], \"dtype\": \"float32\", \"units\": 8, \"activation\": \"relu\",
→˓ \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"RandomUniform\", \
→˓"config\": {\"minval\": -0.05, \"maxval\": 0.05, \"seed\": null}}, \"bias_
→˓initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_regularizer\":
→˓null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_
→˓constraint\": null, \"bias_constraint\": null}}, {\"class_name\": \"Dense\", \
→˓"config\": {\"name\": \"dense_2\", \"trainable\": true, \"units\": 6, \"activation\
→˓": \"relu\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \
→˓"RandomUniform\", \"config\": {\"minval\": -0.05, \"maxval\": 0.05, \"seed\": null}}
→˓, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_
→˓regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \
→˓"kernel_constraint\": null, \"bias_constraint\": null}}, {\"class_name\": \"Dense\",
→˓ \"config\": {\"name\": \"dense_3\", \"trainable\": true, \"units\": 1, \
→˓"activation\": \"sigmoid\", \"use_bias\": true, \"kernel_initializer\": {\"class_
→˓name\": \"RandomUniform\", \"config\": {\"minval\": -0.05, \"maxval\": 0.05, \"seed\
→˓": null}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \
→˓"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\":
→˓null, \"kernel_constraint\": null, \"bias_constraint\": null}}], \"keras_version\":
→˓\"2.1.4\", \"backend\": \"tensorflow\"}",

"model_weights": {
"weights": "[[[0.0426323749,-0.0255882181,-0.0090597291,0.1283773184,0.

→˓0292089302,0.0025187351,0.0829728991,0.1176706031],[0.037888933,0.0087408721,0.
→˓0459016114,0.1122659445,-0.016116729,0.0464626513,0.0540330783,0.022757668],[-0.
→˓0214296542,0.0262879357,0.0038285167,-0.0734874904,-0.0107907392,0.0001898558,-0.
→˓1048046276,-0.0412591994],[0.007992073,-0.0265324973,0.0369161405,0.0394662991,0.
→˓0031596741,-0.0152786113,0.0967443436,0.0810386315],[0.0589824058,0.0064139194,0.
→˓0142697673,0.1090230495,0.0537979342,0.0046058199,0.1009583548,0.0961056277],[0.
→˓0956505686,0.0055070231,-0.0196403004,0.1306117624,0.0538136661,-0.0151381232,0.
→˓1598619968,0.1096331924],[-0.0228838958,0.0238968544,0.0322253667,-0.0315970778,0.
→˓0328627527,0.0515150316,-0.1444948912,-0.0172979422],[-0.0669921488,-0.0633563995,0.
→˓026413843,-0.0758443102,0.0212015193,0.0008845639,-0.1340515614,-0.0885572657],[-0.
→˓0379409157,0.0235466771,-0.0239608623,-0.0233518947,-0.0180600733,-0.000621935,-0.
→˓0909899473,-0.0650934204],[-0.1045127213,0.0289334524,-0.0202295408,-0.1071161181,0.
→˓0011363167,0.0574624874,-0.1407585889,-0.1154722199],[-0.0820850208,-0.0178494379,-
→˓0.0217043143,-0.0971601605,-0.0540295169,0.0126081835,-0.1323711425,-0.0351396762],
→˓[-0.0396530814,-0.0489722192,-0.0246039722,-0.0223898534,-0.0241458677,0.034281414,-
→˓0.1406630576,-0.1091260538],[-0.0556271039,-0.0563059077,-0.0233718585,-0.
→˓0885359943,-0.0523045808,0.0029973972,-0.047497876,-0.0678029805],[-0.0830031335,-0.
→˓0494688451,0.0220204517,-0.068020612,0.0165492371,0.0551169775,-0.0784559101,-0.
→˓0418072231],[-0.0427264832,-0.0430617929,0.0010199838,-0.0166956335,0.0032942081,0.
→˓001454784,-0.0962905437,-0.0894291624],[-0.0758964419,-0.0236174613,0.0260267798,-0.
→˓1116409451,-0.039193593,-0.0216977205,-0.1275075376,-0.0769466385],[-0.0189716518,-
→˓0.0011924787,0.0378293768,-0.0616473816,-0.0058780708,-0.0095390407,-0.0897467956,-
→˓0.0901271477],[-0.0807787329,-0.0143492874,-0.0354749262,-0.0797566995,0.0338315442,
→˓-0.024086047,-0.0861588418,-0.0659692138],[-0.0624345131,-0.0491259694,0.0337389037,
→˓-0.0533887483,0.0058928118,-0.035079021,-0.134863764,-0.0412503555],[-0.0379889719,-
→˓0.0485685989,0.0187181961,-0.0228507519,-0.051875487,0.0183100309,-0.1258815378,-0.
→˓0734021738],[-0.0277079009,0.0286247917,0.0038159075,-0.0966584384,-0.005367511,0.
→˓0266397614,-0.1313499063,-0.0257532299],[-0.0770806,-0.0542856306,-0.000666048,-0.
→˓0634321198,0.026355302,-0.0066100159,-0.0456909463,-0.0334356874],[-0.0904787034,-0.
→˓0271485578,0.0489063449,-0.0324975327,-0.0418805331,0.0154382363,-0.0966121927,-0.
→˓0713369027],[-0.0432081558,-0.0086686136,-0.0281147528,-0.0924807042,0.0139136631,-
→˓0.0166061427,-0.0506068021,-0.0763159022],[-0.0625338033,0.0062450422,0.0534292571,-
→˓0.0707026199,-0.024397444,-0.0328290649,-0.1001479179,-0.0974239931],[-0.0936535373,
→˓-0.0477943867,-0.0313425213,-0.1001306772,-0.0306321867,-0.0217516664,-0.1106291041,
→˓-0.023179628],[-0.1038499326,-0.028331412,-0.0345370658,-0.0847722739,0.0043513202,-
→˓0.0235293116,-0.1417917758,-0.1084775403],[-0.0255202819,0.0110019408,0.0376705453,-
→˓0.0307282936,-0.0009297428,-0.0346140675,-0.0557651855,-0.075329639],[0.0327686854,-
→˓0.0048621781,-0.0449326374,0.1063804403,0.0354809873,-0.031704843,0.1717805862,0.
→˓0739540011],[-0.0120043308,0.0316974148,0.0294647831,-0.0407527275,-0.0047504301,-0.
→˓0305531397,-0.0991907716,-0.0953953043],[-0.1024203598,0.099888809,-0.0079205092,-0.
→˓0490499474,-0.0271461513,0.0822322369,0.0575119071,0.0676374361],[-0.0975352377,-0.
→˓0279858597,-0.0375377163,-0.0733665898,0.0024956453,0.0000131985,-0.0623091795,-0.
→˓0348203406],[-0.1044042036,-0.0493010655,0.0560958013,-0.0540509932,-0.0211698078,-
→˓0.0265545212,-0.0715102479,-0.0359795876],[-0.0425768159,0.0305278897,-0.0213658791,
→˓-0.0220552664,-0.0028750291,0.0152840279,-0.1093827412,-0.0265729669],[-0.
→˓0947411284,0.0571837798,0.0370233022,-0.0815027654,-0.0462668501,0.0736624524,-0.
→˓0058687618,-0.0746894926],[-0.0609302185,0.0090621058,-0.0419382341,-0.1110604107,-
→˓0.0119013209,-0.017867554,-0.0557432212,-0.087935932],[-0.0381675027,0.0101275556,0.
→˓0067694304,-0.0998164713,-0.0359654427,-0.0082442584,-0.0981924981,-0.1116829589],[-
→˓0.0741901025,0.0291563496,-0.0264984984,-0.0616867431,-0.0063055283,0.0279856529,-0.
→˓0907634646,-0.1027278528],[-0.0758224577,0.0015842745,0.0338854305,-0.0514345653,-0.
→˓010851006,-0.0060120882,-0.0644992739,-0.0726546496],[-0.0508742668,-0.0639033169,-
→˓0.0423267372,-0.0164754614,0.0243874229,-0.0255884398,-0.1314629316,-0.0759309903],
→˓[0.0438570306,-0.0348124057,-0.0189036988,0.016748948,0.0424729399,-0.0581890643,0.
→˓0896789953,0.0363361128],[-0.0386991538,-0.0180182755,-0.0424260609,-0.1039735526,0.
→˓0112775657,0.0560146682,-0.1352385879,-0.0222511459],[-0.035192512,-0.0047485712,0.
→˓015257326,-0.0013657424,-0.0506449156,-0.0291663408,0.0103004025,0.0294213798],[0.
→˓0089905122,0.0350620709,0.0046768119,-0.0415131934,-0.0150964623,0.0221417733,-0.
→˓0056831283,0.0544817522],[-0.0420532711,0.0079685589,0.0067148004,-0.082384862,0.
→˓0022194732,-0.0165153295,-0.1248686388,-0.019711487],[-0.096077241,-0.0254066326,-0.
→˓0540779792,-0.0449774973,-0.0033162525,0.0440527797,-0.0071636667,-0.0076389913],[0.
→˓0116391173,-0.0320617296,-0.0108245742,0.0027867109,0.0180245712,0.0012698642,-0.
→˓099055782,-0.0219898615],[0.00900253,0.0287133083,0.0537100956,-0.0744302124,0.
→˓0305081364,0.0016400049,-0.0700737685,-0.0486903861],[0.0033208129,0.0157403499,-0.
→˓0253775604,-0.0587556846,0.0218016598,0.028432576,-0.1294285953,-0.0836849883],[0.
→˓0367537104,-0.0175779108,-0.0051506036,-0.057613682,0.0313959233,-0.0433652923,-0.
→˓0949594006,-0.0432897843],[-0.0339793079,0.0020113038,0.0124180513,-0.0530905798,-0.
→˓0427044183,-0.0553700179,-0.1070849448,-0.0691610053],[0.0001814616,-0.0168834105,0.
→˓0339019485,-0.0775102973,-0.0191271659,0.0216677003,-0.0656533465,-0.1144009531],[-
→˓0.1059497893,-0.0049181273,0.0498044118,-0.0346838795,0.0164915081,0.0254156869,-0.
→˓1205460355,-0.0772420093],[-0.0380106792,-0.0061189532,-0.0359303355,-0.0459102169,-
→˓0.0334480405,-0.0367637649,0.0358054154,0.0131852068],[-0.0965600684,0.0022080662,-
→˓0.0093741212,-0.033005625,-0.0194996297,0.0079977531,-0.1066729948,-0.0651928782],[-
→˓0.0560397878,0.0328344405,-0.0274874251,0.0420479812,0.0315765962,0.0070940158,-0.
→˓0787004307,0.0073882868],[-0.0930133164,-0.0196791496,-0.0011561333,-0.0399722718,-
→˓0.0479589812,0.0000561367,-0.0738650635,-0.0443399698],[-0.0840743333,-0.0551205203,
→˓0.0241359416,-0.0662114322,0.0348841324,-0.003500547,-0.125039205,-0.0998590812],[-
→˓0.0498304553,0.03142488,-0.0002348951,-0.0582877211,0.0119131543,0.0372843482,-0.
→˓1186875254,-0.0261092521],[-0.0891042799,-0.0493348017,0.0338282734,-0.0400045402,0.
→˓0408838838,-0.0235499088,-0.0468597487,-0.0568073764],[-0.0808104947,-0.0333214775,-
→˓0.0042998446,-0.065806143,0.0337486975,0.0285946317,-0.132270664,-0.0551608354],[-0.
→˓0990937799,0.0321997777,0.0339404307,-0.0641544685,0.029329313,-0.0001243317,-0.
→˓111442402,-0.026380565],[-0.0159308631,-0.008656092,-0.0455170162,0.0365302898,-0.
→˓0284806192,0.0253368132,-0.1148158312,-0.0022615485],[0.0044460897,0.053295508,0.
→˓0307782292,-0.0550564155,0.0170134939,-0.0393051617,-0.1321098059,0.0248682518],[0.
→˓0363558196,-0.0131116873,0.0325888433,0.0374935232,-0.028289672,-0.0231639612,-0.
→˓0569625199,0.0362283513],[-0.0320892818,-0.0178287178,-0.0314985737,-0.023245478,0.
→˓0207714792,0.0148529997,-0.1123319864,-0.0739320144],[-0.0294432193,0.0545074418,0.
→˓0186652243,-0.0806119889,0.0009009295,0.025605455,0.0006349441,-0.0063184882],[0.
→˓0505009703,0.0361768678,0.0135121401,-0.0116158333,-0.0491209626,-0.0255839732,-0.
→˓0957046375,-0.0473603681]],[0.0588490553,0.0163822807,-0.0064409007,0.0641452521,0.
→˓0059181629,-0.0099197142,0.0951542407,0.0660104603],[[-0.0050316565,0.0507251173,-0.
→˓0241616126,0.0318146385,-0.0744105875,0.0357613154],[0.0290509574,0.0377634503,-0.
→˓0239083767,0.0000599554,-0.0120540028,0.042443905],[0.0221073218,0.0118085258,0.
→˓0258703269,0.0051663192,-0.0452455804,-0.0262466893],[-0.0048780073,0.0732062235,-0.
→˓0393346548,-0.0642782897,0.0263430309,-0.0082829352],[-0.0472923033,0.0224473402,-0.
→˓0167164803,0.0103773978,0.0015468168,-0.0262690522],[-0.0477254875,0.0187563188,-0.
→˓0213371273,-0.0300161056,0.023460472,0.0163392462],[-0.0863996446,0.1024220511,0.
→˓035894502,-0.0403372794,-0.0435755812,0.1845877171],[-0.0398054905,0.0403691866,-0.
→˓0404988527,-0.0220432878,0.0178212691,0.06267111]],[-0.0122304028,0.0925562233,0.0,-
→˓0.0065102046,-0.0187473632,0.0327210948],[[0.022001354],[-0.0505836755],[-0.
→˓015696872],[0.0343161002],[0.0277610142],[-0.0699139088]],[-0.072642006]]"

(continues on next page)

20 Chapter 4. API Examples

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

},
"status": "finished",
"updated": "2018-02-15 18:58:30",
"user_id": 1,
"user_name": "root",
"version": 1

}

4.4.3 Protecting React and Redux with a Deep Neural Network

This guide is a walkthrough for preparing and training a deep neural network for defending React and Redux appli-
cation servers. The accuracy is currently 87% without tuning the DNN or adding in actual exploits or sql-injection
attacks into the attack datasets. Please note the non-attack training data is recorded from a multi-user simulation
against a Django application server. Sorry I have not had enough free time to create a true React and Redux non-attack
dataset (PRs welcome though!).

In the future I am looking to extend the full datasets to include the TCP payload data
stream (hex bytes) for sentiment analysis using an embedding Keras layer (https://blog.keras.io/
using-pre-trained-word-embeddings-in-a-keras-model.html). I imagine deserialized payloads will only increase the
default accuracy, but it is only an assumption for now.

Setup

1. Run these commands to clone the repositories to the same directories for making debugging easier for all users.

mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/train-ai-with-django-swagger-jwt.git /
→˓opt/antinex/api
git clone https://github.com/jay-johnson/network-pipeline-datasets.git /opt/
→˓antinex/datasets
git clone https://github.com/jay-johnson/antinex-datasets.git /opt/antinex/
→˓antinex-datasets

2. Start the REST API

If the REST API is not running, please start it in a new terminal so it can process the prepare and training
requests.

cd /opt/antinex/api
source ~/.venvs/venvdrfpipeline/bin/activate
./install.sh
./start.sh

(Optional) Prepare Attack Dataset

If you want to prepare your own attack dataset run these commands with the REST API running locally:

source ~/.venvs/venvdrfpipeline/bin/activate
export TEST_DATA=/opt/antinex/antinex-datasets/v1/webapps/react-redux/configs/react-
→˓attack-prepare-v1.json
/opt/antinex/api/tests/build-new-dataset.py

Check the files were updated:

4.4. Prepare a Dataset 21

https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

ls -l /opt/antinex/antinex-datasets/v1/webapps/react-redux/inputs/attack/
total 4180
-rw-rw-r-- 1 jay jay 2085 Feb 15 11:08 cleaned_v1_react_attack_metadata.json
-rw-rw-r-- 1 jay jay 2416 Feb 15 11:08 fulldata_v1_react_attack_metadata.json
-rw-rw-r-- 1 jay jay 383193 Feb 15 11:08 v1_react_cleaned_attack.csv
-rw-rw-r-- 1 jay jay 3883685 Feb 15 11:08 v1_react_full_attack.csv

(Optional) Prepare Full Dataset

If you want to prepare your own full dataset run these commands with the REST API running locally:

source ~/.venvs/venvdrfpipeline/bin/activate
export TEST_DATA=/opt/antinex/antinex-datasets/v1/webapps/react-redux/configs/react-
→˓prepare-v1.json
/opt/antinex/api/tests/build-new-dataset.py

Confirm Dataset is Ready

/opt/antinex/antinex-datasets/tools/describe-v1-training.py /opt/antinex/antinex-
→˓datasets/v1/webapps/react-redux/training-ready/v1_react_cleaned.csv

Hopefully your dataset has both attack and non-attack records like:

2018-02-15 11:09:39,541 - describe-training-data - INFO - total records=24300
→˓attack=3100 nonattack=21200 percent_attack=12.76% percent_nonattack=87.24%

What you don’t want to see is this in the output:

2018-02-15 08:47:41,389 - describe-training-data - INFO - total records=21200
→˓attack=0 nonattack=21200 percent_attack=0.00% percent_nonattack=100.00%

That means the prepare step failed to add the attack data into the dataset correctly. Please go back to the Prepare
Dataset step and review paths to the files are correct.

Train Dataset

source ~/.venvs/venvdrfpipeline/bin/activate
export TEST_DATA=/opt/antinex/antinex-datasets/v1/webapps/react-redux/configs/react-
→˓train-v1.json
/opt/antinex/api/tests/create-keras-dnn.py

From the logs taken during creation of this doc, the model is 87% accurate at predicting attack records.

/opt/antinex/api/tests/create-keras-dnn.py INFO:create-keras-dnn:Logging in user
url=http://localhost:8010/api-token-auth/ INFO:create-keras-dnn:logged in user=root
token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyX2lkIjoxLCJ1c2VybmFtZSI6InJvb3QiLCJleHAiOjE1MTg3MjIxMDAsImVtYWlsIjoicm9vdEBlbWFpbC5jb20ifQ.RKItbbMdW5-
hlDpCDxrltx50FFAjMPunberb5GYI748 INFO:create-keras-dnn:building post data INFO:create-keras-dnn:Running
ML Job url=http://localhost:8010/ml/ test_data={‘csv_file’: ‘/opt/antinex/antinex-datasets/v1/webapps/react-
redux/training-ready/v1_react_cleaned.csv’, ‘meta_file’: ‘/opt/antinex/antinex-datasets/v1/webapps/react-
redux/training-ready/cleaned_v1_react_metadata.json’, ‘title’: ‘React and Redux - Keras DNN - Dataset v1’,
‘desc’: ‘Training React and Redux DNN using Attack and Non-attack data captured using the network-pipeline’,
‘ds_name’: ‘cleaned’, ‘algo_name’: ‘dnn’, ‘ml_type’: ‘keras’, ‘predict_feature’: ‘label_value’, ‘training_data’: ‘{}’,

22 Chapter 4. API Examples

INFO:create-keras-dnn:Logging

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

‘pre_proc’: ‘{}’, ‘post_proc’: ‘{}’, ‘meta_data’: ‘{}’, ‘version’: 1} INFO:create-keras-dnn:SUCCESS - Post Re-
sponse status=201 reason=Created INFO:create-keras-dnn:{‘job’: {‘id’: 16, ‘user_id’: 1, ‘user_name’: ‘root’, ‘title’:
‘React and Redux - Keras DNN - Dataset v1’, ‘desc’: ‘Training React and Redux DNN using Attack and Non-attack
data captured using the network-pipeline’, ‘ds_name’: ‘cleaned’, ‘algo_name’: ‘dnn’, ‘ml_type’: ‘keras’, ‘status’:
‘initial’, ‘control_state’: ‘active’, ‘predict_feature’: ‘label_value’, ‘training_data’: {}, ‘pre_proc’: {}, ‘post_proc’: {},
‘meta_data’: {}, ‘tracking_id’: ‘ml_99743fd9-ff52-4bf7-b42e-3ec25434507d’, ‘version’: 1, ‘created’: ‘2018-02-15
19:10:00’, ‘updated’: ‘2018-02-15 19:10:00’, ‘deleted’: ‘’}, ‘results’: {‘id’: 12, ‘user_id’: 1, ‘user_name’: ‘root’,
‘job_id’: 16, ‘status’: ‘finished’, ‘version’: 1, ‘acc_data’: {‘accuracy’: 87.4074073926902}, ‘error_data’: None,
‘model_json’: ‘{“class_name”: “Sequential”, “config”: [{“class_name”: “Dense”, “config”: {“name”: “dense_4”,
“trainable”: true, “batch_input_shape”: [null, 68], “dtype”: “float32”, “units”: 8, “activation”: “relu”, “use_bias”:
true, “kernel_initializer”: {“class_name”: “RandomUniform”, “config”: {“minval”: -0.05, “maxval”: 0.05, “seed”:
null}}, “bias_initializer”: {“class_name”: “Zeros”, “config”: {}}, “kernel_regularizer”: null, “bias_regularizer”: null,
“activity_regularizer”: null, “kernel_constraint”: null, “bias_constraint”: null}}, {“class_name”: “Dense”, “config”:
{“name”: “dense_5”, “trainable”: true, “units”: 6, “activation”: “relu”, “use_bias”: true, “kernel_initializer”:
{“class_name”: “RandomUniform”, “config”: {“minval”: -0.05, “maxval”: 0.05, “seed”: null}}, “bias_initializer”:
{“class_name”: “Zeros”, “config”: {}}, “kernel_regularizer”: null, “bias_regularizer”: null, “activity_regularizer”:
null, “kernel_constraint”: null, “bias_constraint”: null}}, {“class_name”: “Dense”, “config”: {“name”: “dense_6”,
“trainable”: true, “units”: 1, “activation”: “sigmoid”, “use_bias”: true, “kernel_initializer”: {“class_name”: “Rando-
mUniform”, “config”: {“minval”: -0.05, “maxval”: 0.05, “seed”: null}}, “bias_initializer”: {“class_name”: “Zeros”,
“config”: {}}, “kernel_regularizer”: null, “bias_regularizer”: null, “activity_regularizer”: null, “kernel_constraint”:
null, “bias_constraint”: null}}], “keras_version”: “2.1.4”, “backend”: “tensorflow”}’, ‘model_weights’:
{‘weights’: ‘[[[0.052631028,-0.0195708107,0.0235880036,-0.0160469897,0.0599223375,-0.019402137,-
0.0315921232,-0.0252120867],[-0.0266926326,-0.0446610935,0.0770860612,-0.0265123285,-0.0030328943,-
0.0082395915,-0.0333385319,-0.0549867488],[-0.0178412981,-0.0179316401,-0.0041324655,0.0311650522,-
0.0275568571,-0.0177768506,-0.0017130028,0.0179622211],[-0.0210418832,0.0191573389,-
0.0079981312,-0.0045636012,-0.0231961794,-0.0242097769,-0.0480531305,0.0070477622],[-
0.0076428168,-0.0474744439,0.0809031352,0.0383856446,0.077907823,0.0533846281,-0.0197199378,-
0.0196586996],[-0.0110050291,-0.0242669974,0.0505006835,0.0275756605,0.105092898,-0.0376476645,-
0.0762326866,0.0276804604],[-0.0976924598,0.0391854085,-0.0141086681,0.0269201249,-0.0526741482,-
0.0203541424,-0.0667346716,-0.0057867416],[-0.0809081569,-0.0117225731,-0.0270767137,-
0.0074305944,-0.0496960655,0.0531772338,-0.0928004384,0.0294681992],[-0.0648343191,0.033810243,-
0.0313544422,-0.0063377586,0.0217672195,0.0425700881,-0.0685876012,-0.037825048],[-0.1137577444,-
0.0154528851,-0.0387987643,0.0237913579,-0.0190423597,-0.0365628861,-0.0272838157,0.0166711546],[-
0.0282623619,0.0022903634,-0.0708298087,-0.0558150895,-0.0013412465,-0.0244858544,-0.0343662649,-
0.0135337785],[-0.1104128957,0.0239975192,-0.0244038738,-0.0074469303,-0.0177662577,0.0057930686,-
0.0428019688,-0.0244289562],[-0.0451579466,0.0520865507,-0.0094025219,0.0118894158,-
0.0648013577,-0.0122414632,0.0000643103,-0.0415868312],[-0.0886026621,0.0346491151,-0.0936349779,-
0.0328464732,-0.0596412234,0.0380754471,-0.0481899679,0.0351417623],[-0.062903963,0.0366867296,-
0.0671236813,-0.0331896245,0.00912847,-0.0117816087,-0.0623806491,-0.0489633642],[-0.1062339991,-
0.0182165653,-0.0384030677,-0.049000904,-0.0297394134,0.0507741459,-0.0590156689,0.0042186659],[-
0.0655230284,-0.0152729163,-0.040764153,0.0108577851,0.0204557627,0.0553223975,-0.0098171271,-
0.0185332336],[-0.086137265,0.0079337712,-0.0300996657,0.0136304209,0.0023132216,-
0.0276144557,0.0024335615,0.0041935169],[-0.0926613957,0.0348509587,-0.0282577146,-
0.0021309936,0.0195951276,0.0242319237,-0.0867084935,-0.0303266309],[-0.0527052283,0.0738844797,-
0.0327605456,0.0233741403,0.0127363019,0.0397874378,-0.0238321126,-0.0234394111],[-
0.0875016078,0.0483934507,-0.0637599453,0.0238931421,-0.0292015113,-0.0354836248,-0.0078475857,-
0.0428684168],[-0.0968683437,0.023401808,-0.0867186263,-0.0019967486,-0.043619439,0.0408246256,-
0.0914459601,-0.0269118957],[-0.0314008556,0.0583638065,-0.0629426241,0.0462925099,-
0.0173312239,0.0523343422,-0.0680754483,-0.0483582541],[-0.1000395641,0.0204116944,-
0.0048646885,0.0533132404,-0.0013003877,0.020463245,-0.091444172,-0.0125555154],[-
0.0903037712,0.0633033514,-0.0521341041,0.0165143125,-0.067955777,0.0549336262,-0.0217242986,-
0.0051297308],[-0.0463354439,-0.001126894,-0.0578635745,-0.0226509105,-0.0180652086,0.0319400653,-
0.0667770281,-0.0421370417],[-0.0796041787,0.0605712049,-0.030303454,0.0321338288,-0.0651268736,-
0.0003121346,-0.0893633217,-0.0459697694],[-0.0253375992,0.0586420111,-0.083028771,-

4.4. Prepare a Dataset 23

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

0.0312443115,-0.0419821627,-0.0239030756,-0.0432118811,-0.0545598008],[0.1129746288,-
0.0144239282,0.0394194089,0.0450047478,0.0239712521,-0.0041741244,0.056005016,-0.0341856368],[-
0.0879750699,0.0274951402,-0.0778044164,-0.0063563818,0.0221106634,-0.0227532648,-
0.0337350629,-0.0577941015],[0.0052057616,-0.0076587838,-0.0357088856,0.0170469936,-
0.0300128311,-0.0045791264,0.0240043458,-0.0538814738],[-0.0435640849,0.0551614799,-
0.0377208367,0.0239589661,0.0153081194,-0.0299693178,-0.0078395531,-0.0172580741],[-
0.089750737,0.002687284,-0.0327109061,-0.0190543588,-0.0183317158,-0.0186330117,-0.0300050508,-
0.0049766293],[-0.0617307387,0.0570785664,-0.0957253426,-0.0419555083,-0.0404380448,-
0.0296482742,-0.0400823094,-0.052381631],[-0.0028140291,-0.0363146253,-0.0830766857,0.0459738672,-
0.0008706906,0.0482100584,0.0369101912,-0.0254053846],[-0.1060718447,0.0533535294,-0.0124383941,-
0.0481052585,-0.0159467235,0.0437121503,-0.0373585932,0.0067033148],[-0.0716029555,0.0494868793,-
0.02825954,0.0206357539,-0.0450302809,0.0430571102,-0.0696179047,0.0003198251],[-
0.0339473598,-0.0198790804,-0.0145128313,-0.0321352817,-0.0014832687,-0.0332573541,-
0.0706539527,0.0241565295],[-0.041627232,0.0105764754,-0.0028503521,-0.0275784023,-
0.0169867314,-0.0152813829,0.0311609209,-0.0055409656],[-0.0560917333,0.0728324056,-
0.086179018,-0.0263916943,-0.0134663749,0.0310398471,-0.0845057219,0.0376214646],[0.0913455263,-
0.0244095344,0.04827068,0.0233552195,-0.008574103,-0.0283995494,0.0031798296,-0.0317710489],[-
0.0624284483,-0.0016197762,-0.0785579458,-0.0338378102,0.000383949,0.0109281447,-
0.041599106,0.0070661204],[-0.0086845122,-0.017280519,-0.0152701437,0.0125841666,0.0271950159,-
0.0383302346,0.0036404752,0.0427528396],[0.0793109238,-0.0227750819,-0.010209349,0.0119409207,-
0.0098429937,-0.0377885513,0.0298203342,-0.0102348486],[-0.0240933504,0.0260769036,-
0.0036114398,-0.0170906186,-0.0000439026,-0.0470194109,0.0108775385,0.0033790595],[0.0500849932,-
0.0341464207,0.0060232393,0.0181315113,0.0037009821,0.0123735731,0.0424274057,-
0.0054885577],[-0.058255434,-0.0118014067,-0.0580486469,-0.0455605276,-0.0682392865,-
0.0163716339,0.0017862685,0.0341342129],[-0.0226843059,0.0439862236,-0.0259097423,-
0.0413032919,0.0158601198,-0.0106990431,-0.0477556884,0.0029960452],[-0.0385067165,0.0142230922,-
0.0072720801,0.0303163808,0.0142978448,-0.0209562685,-0.0893662795,-0.038411539],[-
0.0713111758,0.0383256078,-0.0761647969,0.0015004368,-0.0180589538,0.0243014079,-0.0387510918,-
0.0375607759],[-0.1070147157,-0.0216446109,-0.0253466871,-0.0559930541,-0.0718536079,0.052701626,-
0.0909493491,0.0051109158],[-0.0939891934,0.0235079378,-0.0350640751,-0.0262695979,-
0.0056846449,0.0010250245,-0.0683567822,0.022541048],[-0.1046996713,0.0637534857,-0.0618929118,-
0.0553447343,-0.0366071835,0.0017380636,-0.0060565625,-0.0285031348],[0.0267615207,-
0.0164158121,0.0243424661,0.0221200697,0.041919861,0.0484827645,-0.0045593604,0.0202077739],[-
0.0672270656,0.006625135,-0.0738261864,0.0167296026,0.0209824499,0.0530312769,-0.0255036,-
0.0328175128],[0.0385857783,0.0345200114,0.012945978,-0.0366297849,0.0055175275,-
0.0025519063,0.0558558255,0.0481611751],[-0.0206962395,0.000667054,0.0023179185,0.0031977177,0.0110240057,-
0.0364335552,0.0004348502,-0.0018964445],[-0.1055001467,-0.0173251275,-0.0073329764,-
0.0535804629,-0.0067843311,0.0287012067,-0.0517770648,-0.041283831],[-0.0876494646,0.0599330775,-
0.0007948491,0.0177025273,0.0052934354,0.0361828543,-0.0200640485,-0.0020867223],[-
0.0504096933,-0.0046923552,-0.0253490042,0.0042371131,-0.0158475023,0.0011175644,-
0.0807759166,0.0389074348],[-0.0365884416,0.049988497,-0.034362331,-0.026570566,-
0.0239959899,0.03372458,0.0029976598,-0.014007993],[-0.0184149221,0.0066243359,-
0.01104559,0.0150875505,0.010089457,-0.0374504104,-0.0416944511,-0.0138070658],[0.0306735747,-
0.0084939497,-0.0207424723,0.0112914825,0.0215460621,-0.0131431986,0.0598166697,-
0.0047641485],[-0.0131553896,0.026114041,-0.0776950493,-0.0369460955,0.0089351963,0.0063564447,-
0.0250268783,-0.0383680686],[0.0264446568,0.0177899543,0.0337854289,0.0486565344,0.0455680899,-
0.0133411037,-0.0472401679,-0.0042054271],[-0.0156883281,0.0023868394,-0.0359831229,-
0.0533350222,-0.0620505922,0.0117895743,-0.0465891063,0.014333277],[0.0037823613,-
0.0485859625,0.0304957367,0.0142664108,0.0231500044,0.0199270826,-0.0771579742,0.0058415439],[0.0093906112,0.0439415686,-
0.0403797813,0.0201416481,-0.0099902553,-0.0186526831,-0.053171806,0.0428802408]],[0.0652318001,-
0.027705403,0.0473561734,0.0063774441,0.0273798443,-0.0068882219,0.0441013537,0.0095654931],[[0.0664635003,-
0.0361788496,0.0981992334,-0.0049552293,0.0115166651,0.0670768172],[-0.0061368346,0.0072507635,-
0.0050328653,0.0159201734,0.0065031671,0.026376985],[0.0508560166,-0.0063855532,0.1221936271,-
0.0424587801,-0.0302463807,0.0992918313],[0.1041004956,-0.0349653065,0.0151295438,-

24 Chapter 4. API Examples

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

0.0530779213,-0.0269837249,0.0135957841],[0.1047551259,-0.0295952559,0.0221561752,-0.0217163917,-
0.0311993714,0.0422756672],[-0.0463010445,0.032602299,-0.0292981397,0.0043135858,0.0399170071,-
0.0342914276],[0.0540453047,-0.0274718888,0.0625797585,0.0309408139,-0.0458704196,0.0513330922],[-
0.0057910825,-0.008349441,0.0426463857,-0.0266905036,0.0196692776,0.0481408983]],[0.0441856496,-
0.0279886983,0.0708117858,-0.0080904942,-0.0135130016,0.0418888181],[[-0.1451997608],[-0.0171129871],[-
0.1398460418],[-0.0024810787],[0.024602361],[-0.0444240533]],[-0.0354687795]]’}, ‘acc_image_file’: ‘/me-
dia/sf_shared/accuracy_job_16_result_12.png’, ‘created’: ‘2018-02-15 19:11:06’, ‘updated’: ‘2018-02-15 19:11:06’,
‘deleted’: ‘’}}

Get the Deep Neural Network Accuracy, JSON and Weights

This will display all the recent training runs in a list sorted by newest.

/opt/antinex/api/tests/get-recent-results.py

Here’s the training node in the list from the run above (yours will look a little different):

{
"acc_data": {

"accuracy": 87.4074073926902
},
"acc_image_file": "/media/sf_shared/accuracy_job_16_result_12.png",
"created": "2018-02-15 19:11:06",
"deleted": "",
"error_data": null,
"id": 12,
"job_id": 16,
"model_json": "{\"class_name\": \"Sequential\", \"config\": [{\"class_name\": \

→˓"Dense\", \"config\": {\"name\": \"dense_4\", \"trainable\": true, \"batch_input_
→˓shape\": [null, 68], \"dtype\": \"float32\", \"units\": 8, \"activation\": \"relu\",
→˓ \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"RandomUniform\", \
→˓"config\": {\"minval\": -0.05, \"maxval\": 0.05, \"seed\": null}}, \"bias_
→˓initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_regularizer\":
→˓null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_
→˓constraint\": null, \"bias_constraint\": null}}, {\"class_name\": \"Dense\", \
→˓"config\": {\"name\": \"dense_5\", \"trainable\": true, \"units\": 6, \"activation\
→˓": \"relu\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \
→˓"RandomUniform\", \"config\": {\"minval\": -0.05, \"maxval\": 0.05, \"seed\": null}}
→˓, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_
→˓regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \
→˓"kernel_constraint\": null, \"bias_constraint\": null}}, {\"class_name\": \"Dense\",
→˓ \"config\": {\"name\": \"dense_6\", \"trainable\": true, \"units\": 1, \
→˓"activation\": \"sigmoid\", \"use_bias\": true, \"kernel_initializer\": {\"class_
→˓name\": \"RandomUniform\", \"config\": {\"minval\": -0.05, \"maxval\": 0.05, \"seed\
→˓": null}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \
→˓"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\":
→˓null, \"kernel_constraint\": null, \"bias_constraint\": null}}], \"keras_version\":
→˓\"2.1.4\", \"backend\": \"tensorflow\"}",

"model_weights": {
"weights": "[[[0.052631028,-0.0195708107,0.0235880036,-0.0160469897,0.

→˓0599223375,-0.019402137,-0.0315921232,-0.0252120867],[-0.0266926326,-0.0446610935,0.
→˓0770860612,-0.0265123285,-0.0030328943,-0.0082395915,-0.0333385319,-0.0549867488],[-
→˓0.0178412981,-0.0179316401,-0.0041324655,0.0311650522,-0.0275568571,-0.0177768506,-
→˓0.0017130028,0.0179622211],[-0.0210418832,0.0191573389,-0.0079981312,-0.0045636012,-
→˓0.0231961794,-0.0242097769,-0.0480531305,0.0070477622],[-0.0076428168,-0.0474744439,
→˓0.0809031352,0.0383856446,0.077907823,0.0533846281,-0.0197199378,-0.0196586996],[-0.
→˓0110050291,-0.0242669974,0.0505006835,0.0275756605,0.105092898,-0.0376476645,-0.
→˓0762326866,0.0276804604],[-0.0976924598,0.0391854085,-0.0141086681,0.0269201249,-0.
→˓0526741482,-0.0203541424,-0.0667346716,-0.0057867416],[-0.0809081569,-0.0117225731,-
→˓0.0270767137,-0.0074305944,-0.0496960655,0.0531772338,-0.0928004384,0.0294681992],[-
→˓0.0648343191,0.033810243,-0.0313544422,-0.0063377586,0.0217672195,0.0425700881,-0.
→˓0685876012,-0.037825048],[-0.1137577444,-0.0154528851,-0.0387987643,0.0237913579,-0.
→˓0190423597,-0.0365628861,-0.0272838157,0.0166711546],[-0.0282623619,0.0022903634,-0.
→˓0708298087,-0.0558150895,-0.0013412465,-0.0244858544,-0.0343662649,-0.0135337785],[-
→˓0.1104128957,0.0239975192,-0.0244038738,-0.0074469303,-0.0177662577,0.0057930686,-0.
→˓0428019688,-0.0244289562],[-0.0451579466,0.0520865507,-0.0094025219,0.0118894158,-0.
→˓0648013577,-0.0122414632,0.0000643103,-0.0415868312],[-0.0886026621,0.0346491151,-0.
→˓0936349779,-0.0328464732,-0.0596412234,0.0380754471,-0.0481899679,0.0351417623],[-0.
→˓062903963,0.0366867296,-0.0671236813,-0.0331896245,0.00912847,-0.0117816087,-0.
→˓0623806491,-0.0489633642],[-0.1062339991,-0.0182165653,-0.0384030677,-0.049000904,-
→˓0.0297394134,0.0507741459,-0.0590156689,0.0042186659],[-0.0655230284,-0.0152729163,-
→˓0.040764153,0.0108577851,0.0204557627,0.0553223975,-0.0098171271,-0.0185332336],[-0.
→˓086137265,0.0079337712,-0.0300996657,0.0136304209,0.0023132216,-0.0276144557,0.
→˓0024335615,0.0041935169],[-0.0926613957,0.0348509587,-0.0282577146,-0.0021309936,0.
→˓0195951276,0.0242319237,-0.0867084935,-0.0303266309],[-0.0527052283,0.0738844797,-0.
→˓0327605456,0.0233741403,0.0127363019,0.0397874378,-0.0238321126,-0.0234394111],[-0.
→˓0875016078,0.0483934507,-0.0637599453,0.0238931421,-0.0292015113,-0.0354836248,-0.
→˓0078475857,-0.0428684168],[-0.0968683437,0.023401808,-0.0867186263,-0.0019967486,-0.
→˓043619439,0.0408246256,-0.0914459601,-0.0269118957],[-0.0314008556,0.0583638065,-0.
→˓0629426241,0.0462925099,-0.0173312239,0.0523343422,-0.0680754483,-0.0483582541],[-0.
→˓1000395641,0.0204116944,-0.0048646885,0.0533132404,-0.0013003877,0.020463245,-0.
→˓091444172,-0.0125555154],[-0.0903037712,0.0633033514,-0.0521341041,0.0165143125,-0.
→˓067955777,0.0549336262,-0.0217242986,-0.0051297308],[-0.0463354439,-0.001126894,-0.
→˓0578635745,-0.0226509105,-0.0180652086,0.0319400653,-0.0667770281,-0.0421370417],[-
→˓0.0796041787,0.0605712049,-0.030303454,0.0321338288,-0.0651268736,-0.0003121346,-0.
→˓0893633217,-0.0459697694],[-0.0253375992,0.0586420111,-0.083028771,-0.0312443115,-0.
→˓0419821627,-0.0239030756,-0.0432118811,-0.0545598008],[0.1129746288,-0.0144239282,0.
→˓0394194089,0.0450047478,0.0239712521,-0.0041741244,0.056005016,-0.0341856368],[-0.
→˓0879750699,0.0274951402,-0.0778044164,-0.0063563818,0.0221106634,-0.0227532648,-0.
→˓0337350629,-0.0577941015],[0.0052057616,-0.0076587838,-0.0357088856,0.0170469936,-0.
→˓0300128311,-0.0045791264,0.0240043458,-0.0538814738],[-0.0435640849,0.0551614799,-0.
→˓0377208367,0.0239589661,0.0153081194,-0.0299693178,-0.0078395531,-0.0172580741],[-0.
→˓089750737,0.002687284,-0.0327109061,-0.0190543588,-0.0183317158,-0.0186330117,-0.
→˓0300050508,-0.0049766293],[-0.0617307387,0.0570785664,-0.0957253426,-0.0419555083,-
→˓0.0404380448,-0.0296482742,-0.0400823094,-0.052381631],[-0.0028140291,-0.0363146253,
→˓-0.0830766857,0.0459738672,-0.0008706906,0.0482100584,0.0369101912,-0.0254053846],[-
→˓0.1060718447,0.0533535294,-0.0124383941,-0.0481052585,-0.0159467235,0.0437121503,-0.
→˓0373585932,0.0067033148],[-0.0716029555,0.0494868793,-0.02825954,0.0206357539,-0.
→˓0450302809,0.0430571102,-0.0696179047,0.0003198251],[-0.0339473598,-0.0198790804,-0.
→˓0145128313,-0.0321352817,-0.0014832687,-0.0332573541,-0.0706539527,0.0241565295],[-
→˓0.041627232,0.0105764754,-0.0028503521,-0.0275784023,-0.0169867314,-0.0152813829,0.
→˓0311609209,-0.0055409656],[-0.0560917333,0.0728324056,-0.086179018,-0.0263916943,-0.
→˓0134663749,0.0310398471,-0.0845057219,0.0376214646],[0.0913455263,-0.0244095344,0.
→˓04827068,0.0233552195,-0.008574103,-0.0283995494,0.0031798296,-0.0317710489],[-0.
→˓0624284483,-0.0016197762,-0.0785579458,-0.0338378102,0.000383949,0.0109281447,-0.
→˓041599106,0.0070661204],[-0.0086845122,-0.017280519,-0.0152701437,0.0125841666,0.
→˓0271950159,-0.0383302346,0.0036404752,0.0427528396],[0.0793109238,-0.0227750819,-0.
→˓010209349,0.0119409207,-0.0098429937,-0.0377885513,0.0298203342,-0.0102348486],[-0.
→˓0240933504,0.0260769036,-0.0036114398,-0.0170906186,-0.0000439026,-0.0470194109,0.
→˓0108775385,0.0033790595],[0.0500849932,-0.0341464207,0.0060232393,0.0181315113,0.
→˓0037009821,0.0123735731,0.0424274057,-0.0054885577],[-0.058255434,-0.0118014067,-0.
→˓0580486469,-0.0455605276,-0.0682392865,-0.0163716339,0.0017862685,0.0341342129],[-0.
→˓0226843059,0.0439862236,-0.0259097423,-0.0413032919,0.0158601198,-0.0106990431,-0.
→˓0477556884,0.0029960452],[-0.0385067165,0.0142230922,-0.0072720801,0.0303163808,0.
→˓0142978448,-0.0209562685,-0.0893662795,-0.038411539],[-0.0713111758,0.0383256078,-0.
→˓0761647969,0.0015004368,-0.0180589538,0.0243014079,-0.0387510918,-0.0375607759],[-0.
→˓1070147157,-0.0216446109,-0.0253466871,-0.0559930541,-0.0718536079,0.052701626,-0.
→˓0909493491,0.0051109158],[-0.0939891934,0.0235079378,-0.0350640751,-0.0262695979,-0.
→˓0056846449,0.0010250245,-0.0683567822,0.022541048],[-0.1046996713,0.0637534857,-0.
→˓0618929118,-0.0553447343,-0.0366071835,0.0017380636,-0.0060565625,-0.0285031348],[0.
→˓0267615207,-0.0164158121,0.0243424661,0.0221200697,0.041919861,0.0484827645,-0.
→˓0045593604,0.0202077739],[-0.0672270656,0.006625135,-0.0738261864,0.0167296026,0.
→˓0209824499,0.0530312769,-0.0255036,-0.0328175128],[0.0385857783,0.0345200114,0.
→˓012945978,-0.0366297849,0.0055175275,-0.0025519063,0.0558558255,0.0481611751],[-0.
→˓0206962395,0.000667054,0.0023179185,0.0031977177,0.0110240057,-0.0364335552,0.
→˓0004348502,-0.0018964445],[-0.1055001467,-0.0173251275,-0.0073329764,-0.0535804629,-
→˓0.0067843311,0.0287012067,-0.0517770648,-0.041283831],[-0.0876494646,0.0599330775,-
→˓0.0007948491,0.0177025273,0.0052934354,0.0361828543,-0.0200640485,-0.0020867223],[-
→˓0.0504096933,-0.0046923552,-0.0253490042,0.0042371131,-0.0158475023,0.0011175644,-0.
→˓0807759166,0.0389074348],[-0.0365884416,0.049988497,-0.034362331,-0.026570566,-0.
→˓0239959899,0.03372458,0.0029976598,-0.014007993],[-0.0184149221,0.0066243359,-0.
→˓01104559,0.0150875505,0.010089457,-0.0374504104,-0.0416944511,-0.0138070658],[0.
→˓0306735747,-0.0084939497,-0.0207424723,0.0112914825,0.0215460621,-0.0131431986,0.
→˓0598166697,-0.0047641485],[-0.0131553896,0.026114041,-0.0776950493,-0.0369460955,0.
→˓0089351963,0.0063564447,-0.0250268783,-0.0383680686],[0.0264446568,0.0177899543,0.
→˓0337854289,0.0486565344,0.0455680899,-0.0133411037,-0.0472401679,-0.0042054271],[-0.
→˓0156883281,0.0023868394,-0.0359831229,-0.0533350222,-0.0620505922,0.0117895743,-0.
→˓0465891063,0.014333277],[0.0037823613,-0.0485859625,0.0304957367,0.0142664108,0.
→˓0231500044,0.0199270826,-0.0771579742,0.0058415439],[0.0093906112,0.0439415686,-0.
→˓0403797813,0.0201416481,-0.0099902553,-0.0186526831,-0.053171806,0.0428802408]],[0.
→˓0652318001,-0.027705403,0.0473561734,0.0063774441,0.0273798443,-0.0068882219,0.
→˓0441013537,0.0095654931],[[0.0664635003,-0.0361788496,0.0981992334,-0.0049552293,0.
→˓0115166651,0.0670768172],[-0.0061368346,0.0072507635,-0.0050328653,0.0159201734,0.
→˓0065031671,0.026376985],[0.0508560166,-0.0063855532,0.1221936271,-0.0424587801,-0.
→˓0302463807,0.0992918313],[0.1041004956,-0.0349653065,0.0151295438,-0.0530779213,-0.
→˓0269837249,0.0135957841],[0.1047551259,-0.0295952559,0.0221561752,-0.0217163917,-0.
→˓0311993714,0.0422756672],[-0.0463010445,0.032602299,-0.0292981397,0.0043135858,0.
→˓0399170071,-0.0342914276],[0.0540453047,-0.0274718888,0.0625797585,0.0309408139,-0.
→˓0458704196,0.0513330922],[-0.0057910825,-0.008349441,0.0426463857,-0.0266905036,0.
→˓0196692776,0.0481408983]],[0.0441856496,-0.0279886983,0.0708117858,-0.0080904942,-0.
→˓0135130016,0.0418888181],[[-0.1451997608],[-0.0171129871],[-0.1398460418],[-0.
→˓0024810787],[0.024602361],[-0.0444240533]],[-0.0354687795]]"

(continues on next page)

4.4. Prepare a Dataset 25

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

}
}

4.4.4 Protecting Spring with a Deep Neural Network

This guide is a walkthrough for preparing and training a deep neural network for defending Spring application servers.
The accuracy is currently 66% without tuning the DNN or adding in actual exploits or sql-injection attacks into the
attack datasets. Please note the non-attack training data is recorded from a multi-user simulation against a Django
application server. Sorry I have not had enough free time to create a true Spring non-attack dataset (PRs welcome
though!).

In the future I am looking to extend the full datasets to include the TCP payload data
stream (hex bytes) for sentiment analysis using an embedding Keras layer (https://blog.keras.io/
using-pre-trained-word-embeddings-in-a-keras-model.html). I imagine deserialized payloads will only increase the
default accuracy, but it is only an assumption for now.

Setup

1. Run these commands to clone the repositories to the same directories for making debugging easier for all users.

mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/train-ai-with-django-swagger-jwt.git /
→˓opt/antinex/api
git clone https://github.com/jay-johnson/network-pipeline-datasets.git /opt/
→˓antinex/datasets
git clone https://github.com/jay-johnson/antinex-datasets.git /opt/antinex/
→˓antinex-datasets

2. Start the REST API

If the REST API is not running, please start it in a new terminal so it can process the prepare and training
requests.

cd /opt/antinex/api
source ~/.venvs/venvdrfpipeline/bin/activate
./install.sh
./start.sh

(Optional) Prepare Attack Dataset

If you want to prepare your own attack dataset run these commands with the REST API running locally:

source ~/.venvs/venvdrfpipeline/bin/activate
export TEST_DATA=/opt/antinex/antinex-datasets/v1/webapps/spring/configs/spring-
→˓attack-prepare-v1.json
/opt/antinex/api/tests/build-new-dataset.py

Check the files were updated:

ls -l /opt/antinex/antinex-datasets/v1/webapps/spring/inputs/attack/
total 13772
-rw-rw-r-- 1 jay jay 2080 Feb 15 11:18 cleaned_v1_spring_attack_metadata.json

(continues on next page)

26 Chapter 4. API Examples

https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

-rw-rw-r-- 1 jay jay 2451 Feb 15 11:18 fulldata_v1_spring_attack_metadata.json
-rw-rw-r-- 1 jay jay 1356260 Feb 15 11:18 v1_spring_cleaned_attack.csv
-rw-rw-r-- 1 jay jay 12731474 Feb 15 11:18 v1_spring_full_attack.csv

(Optional) Prepare Full Dataset

If you want to prepare your own full dataset run these commands with the REST API running locally:

source ~/.venvs/venvdrfpipeline/bin/activate
export TEST_DATA=/opt/antinex/antinex-datasets/v1/webapps/spring/configs/spring-
→˓prepare-v1.json
/opt/antinex/api/tests/build-new-dataset.py

Confirm Dataset is Ready

/opt/antinex/antinex-datasets/tools/describe-v1-training.py /opt/antinex/antinex-
→˓datasets/v1/webapps/spring/training-ready/v1_spring_cleaned.csv

Hopefully your dataset has both attack and non-attack records like:

2018-02-15 11:19:42,038 - describe-training-data - INFO - total records=32000
→˓attack=10800 nonattack=21200 percent_attack=33.75% percent_nonattack=66.25%

What you don’t want to see is this in the output:

2018-02-15 08:47:41,389 - describe-training-data - INFO - total records=21200
→˓attack=0 nonattack=21200 percent_attack=0.00% percent_nonattack=100.00%

That means the prepare step failed to add the attack data into the dataset correctly. Please go back to the Prepare
Dataset step and review paths to the files are correct.

Train Dataset

source ~/.venvs/venvdrfpipeline/bin/activate
export TEST_DATA=/opt/antinex/antinex-datasets/v1/webapps/spring/configs/spring-train-
→˓v1.json
/opt/antinex/api/tests/create-keras-dnn.py

From the logs taken during creation of this doc, the model is 66% accurate at predicting attack records.

/opt/antinex/api/tests/create-keras-dnn.py INFO:create-keras-dnn:Logging in user
url=http://localhost:8010/api-token-auth/ INFO:create-keras-dnn:logged in user=root to-
ken=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyX2lkIjoxLCJ1c2VybmFtZSI6InJvb3QiLCJleHAiOjE1MTg3MjI3MDIsImVtYWlsIjoicm9vdEBlbWFpbC5jb20ifQ.GANY4Ay4_I8e2A01PTmtOwieq4jIpGokpICyY2eeyZ8
INFO:create-keras-dnn:building post data INFO:create-keras-dnn:Running ML Job url=http://localhost:8010/ml/
test_data={‘csv_file’: ‘/opt/antinex/antinex-datasets/v1/webapps/spring/training-ready/v1_spring_cleaned.csv’,
‘meta_file’: ‘/opt/antinex/antinex-datasets/v1/webapps/spring/training-ready/cleaned_v1_spring_metadata.json’,
‘title’: ‘Spring - Keras DNN - Dataset v1’, ‘desc’: ‘Training Spring DNN using Attack and Non-attack data
captured using the network-pipeline’, ‘ds_name’: ‘cleaned’, ‘algo_name’: ‘dnn’, ‘ml_type’: ‘keras’, ‘pre-
dict_feature’: ‘label_value’, ‘training_data’: ‘{}’, ‘pre_proc’: ‘{}’, ‘post_proc’: ‘{}’, ‘meta_data’: ‘{}’,
‘version’: 1} INFO:create-keras-dnn:SUCCESS - Post Response status=201 reason=Created INFO:create-
keras-dnn:{‘job’: {‘id’: 17, ‘user_id’: 1, ‘user_name’: ‘root’, ‘title’: ‘Spring - Keras DNN - Dataset
v1’, ‘desc’: ‘Training Spring DNN using Attack and Non-attack data captured using the network-pipeline’,

4.4. Prepare a Dataset 27

INFO:create-keras-dnn:Logging

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

‘ds_name’: ‘cleaned’, ‘algo_name’: ‘dnn’, ‘ml_type’: ‘keras’, ‘status’: ‘initial’, ‘control_state’: ‘active’,
‘predict_feature’: ‘label_value’, ‘training_data’: {}, ‘pre_proc’: {}, ‘post_proc’: {}, ‘meta_data’: {}, ‘track-
ing_id’: ‘ml_00885343-59fa-4259-91e3-0ae6b8a715cb’, ‘version’: 1, ‘created’: ‘2018-02-15 19:20:02’, ‘updated’:
‘2018-02-15 19:20:02’, ‘deleted’: ‘’}, ‘results’: {‘id’: 13, ‘user_id’: 1, ‘user_name’: ‘root’, ‘job_id’: 17,
‘status’: ‘finished’, ‘version’: 1, ‘acc_data’: {‘accuracy’: 66.09375}, ‘error_data’: None, ‘model_json’:
‘{“class_name”: “Sequential”, “config”: [{“class_name”: “Dense”, “config”: {“name”: “dense_1”, “trainable”:
true, “batch_input_shape”: [null, 68], “dtype”: “float32”, “units”: 8, “activation”: “relu”, “use_bias”: true,
“kernel_initializer”: {“class_name”: “RandomUniform”, “config”: {“minval”: -0.05, “maxval”: 0.05, “seed”:
null}}, “bias_initializer”: {“class_name”: “Zeros”, “config”: {}}, “kernel_regularizer”: null, “bias_regularizer”:
null, “activity_regularizer”: null, “kernel_constraint”: null, “bias_constraint”: null}}, {“class_name”: “Dense”,
“config”: {“name”: “dense_2”, “trainable”: true, “units”: 6, “activation”: “relu”, “use_bias”: true, “ker-
nel_initializer”: {“class_name”: “RandomUniform”, “config”: {“minval”: -0.05, “maxval”: 0.05, “seed”: null}},
“bias_initializer”: {“class_name”: “Zeros”, “config”: {}}, “kernel_regularizer”: null, “bias_regularizer”: null,
“activity_regularizer”: null, “kernel_constraint”: null, “bias_constraint”: null}}, {“class_name”: “Dense”,
“config”: {“name”: “dense_3”, “trainable”: true, “units”: 1, “activation”: “sigmoid”, “use_bias”: true, “ker-
nel_initializer”: {“class_name”: “RandomUniform”, “config”: {“minval”: -0.05, “maxval”: 0.05, “seed”:
null}}, “bias_initializer”: {“class_name”: “Zeros”, “config”: {}}, “kernel_regularizer”: null, “bias_regularizer”:
null, “activity_regularizer”: null, “kernel_constraint”: null, “bias_constraint”: null}}], “keras_version”:
“2.1.4”, “backend”: “tensorflow”}’, ‘model_weights’: {‘weights’: ‘[[[-0.0173000526,-0.0064027878,-
0.0169708095,0.0157266911,0.0662872419,-0.0328218415,0.1295523047,0.0344657972],[-0.0088931685,-
0.0385553166,0.0037408469,0.0977382362,0.0767394751,-0.05592921,0.0982304141,0.014463977],[-
0.0322886854,-0.0368546396,0.0107642207,-0.0718934014,-0.0221321229,0.0071108998,-
0.1037670299,-0.0087477071],[0.0416910201,-0.0537477769,0.019645201,0.0635252744,0.0881028324,-
0.0220302157,0.0654686466,0.012742796],[-0.0213366691,-0.0323441252,-0.0488818437,0.087537989,0.0398393236,-
0.0530910976,0.1179806888,-0.0108120786],[-0.0286345202,-0.0170552637,-0.01019214,0.096555151,0.0748246536,-
0.0755968541,0.0934303999,-0.0308071431],[0.0030201294,-0.0528637655,-0.0346440263,-0.0669601113,-
0.0656459033,0.0276927054,-0.0825652406,-0.0032823205],[-0.0056472942,-0.0407883152,0.0274266116,-
0.0543933474,-0.0784520358,-0.0397142395,-0.1286949962,0.034545105],[0.0393268168,-
0.0346527621,0.0186092779,-0.034386944,-0.0663760602,-0.0158903264,-0.0826205313,0.0005784247],[-
0.0380487517,-0.0278219841,-0.0147631671,-0.016108444,-0.0466402136,0.0435810089,-0.1015856043,-
0.0084425164],[-0.0488428921,-0.0293625016,0.026683338,-0.0435961001,-0.1025879383,-0.0353616923,-
0.0771325007,0.0552083217],[-0.0025817794,-0.0247298032,0.0419541076,-0.0949794203,-
0.026031835,0.0116581451,-0.1078904942,0.0487319119],[-0.0153548149,0.0402287059,-0.002908526,-
0.0893430561,-0.0536826178,-0.0266579315,-0.1445246637,-0.0359159745],[0.0435531884,-
0.025654668,-0.038579829,-0.0826740116,-0.0893285349,0.0105355503,-0.066000931,-0.034613315],[-
0.0488474704,-0.0199130196,0.0422015861,-0.0321295559,-0.0455789417,0.0059766336,-
0.0860127956,0.0176941063],[0.0074663856,0.0338624604,-0.0018213085,-0.0542690866,-0.0301753003,-
0.0390444547,-0.0836630166,0.0284509044],[-0.0511877276,-0.0219058525,-0.0340818726,-0.0345237553,-
0.0381731167,-0.0017185912,-0.1276020557,0.0149726318],[0.0081929648,0.0145618366,0.0185622554,-
0.1079799682,-0.0896312669,-0.0002979506,-0.098251991,0.0011839687],[-0.0210764948,0.0120229824,0.0251360014,-
0.0380748846,-0.0478647351,-0.0444115773,-0.0653204471,-0.0378449708],[-0.0005556387,-
0.0434047244,0.0310283601,-0.0910413787,-0.0988587886,-0.0266462117,-0.0923515782,-0.0181508325],[-
0.0096717393,0.0347021855,0.018473519,-0.0408929698,-0.0938989446,0.0198299177,-0.0886605158,-
0.0234003849],[0.0162979532,-0.0537309386,-0.0134870214,-0.0631217659,-0.0191594698,0.0320905186,-
0.1432752609,0.0562950373],[-0.0522111617,-0.0289670061,-0.0153701846,-0.0334702469,-0.0374529734,-
0.0267687216,-0.0723697096,0.0163344964],[-0.0087670712,-0.0421352983,0.0385387503,-0.1075451523,-
0.0103809508,-0.0249420628,-0.12667723,-0.0193419773],[-0.0398854949,0.0253311843,0.0518782474,-
0.0364522263,-0.0960612893,-0.0428358912,-0.0894641876,0.0275488924],[0.0149986902,-
0.021600645,0.0153730037,-0.0267963409,-0.098190546,0.0403022617,-0.0808125436,0.0382996574],[-
0.0023344536,-0.0428262725,0.0202057045,-0.0766336545,-0.0849173516,0.0463943556,-
0.1428285539,0.0519381054],[0.042711705,-0.050877668,-0.0172832552,-0.0740391836,-
0.0718216076,-0.0103346519,-0.0579395629,0.0442523919],[0.0060770563,0.0171900522,-
0.0219493955,0.1135827675,0.1139239743,0.0393700376,0.1700653881,-0.0374217182],[0.0302413236,0.0040957471,0.044197157,-
0.0525682308,-0.0123297134,-0.0051418832,-0.1161182448,0.0289911013],[0.0080568166,-

28 Chapter 4. API Examples

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

0.0293921139,0.0368611924,-0.031907361,-0.0080400519,0.0517797805,0.0480450913,0.0234247819],[0.0165923182,-
0.0182517283,-0.0100761745,-0.1003762558,-0.0173195116,-0.0350859612,-0.085473381,-
0.0150983492],[0.0067120269,-0.053849794,0.0544353202,-0.0249461662,-0.0422286354,0.0218810663,-
0.1306264699,-0.0048307315],[0.0156460945,0.0277566575,-0.024820514,-0.1039614528,-
0.0260938685,-0.0021631087,-0.0492782556,0.0043323012],[0.0227578375,0.0221582968,0.0007841409,-
0.0886592641,-0.0884859934,0.0525981635,-0.0798395574,0.0458145142],[0.0236985628,-
0.0366411731,0.0548207089,-0.0146643622,-0.0687453374,-0.0444763452,-0.1426427066,-
0.03775746],[-0.0252918322,0.0014541645,0.0016110033,-0.0387289189,-0.0257748235,-
0.0430029631,-0.1233881786,0.0235356223],[0.0122827264,0.0251069088,-0.0027357663,-
0.1024575979,-0.0682099089,-0.0049612666,-0.0609179363,0.0038837341],[-0.0354516096,-
0.033333566,0.0563913882,-0.0726352409,-0.0318466015,0.037089549,-0.074870795,0.0281760283],[-
0.0080876146,-0.0468189716,0.0424663126,-0.0533910729,-0.0204824172,0.0296455175,-
0.0709483698,0.0496929996],[-0.0302802306,-0.0335655995,-0.0102529833,0.1016696915,0.0252007376,-
0.0023698036,0.0479990542,-0.0358106755],[-0.0043822778,-0.0191927347,0.0084026409,-
0.0475930236,-0.0715683997,-0.0273918658,-0.1038119346,0.0135136517],[0.0292350873,-
0.0316817425,0.0423877165,0.0283667725,-0.0179847665,-0.0016444682,-0.0026728681,0.0337618776],[-
0.037272051,-0.0279664211,0.0315952115,0.0440362394,0.0267583579,0.0005767916,0.0571529903,0.0346558914],[0.0195410363,-
0.0069632046,-0.0175475031,-0.0679977313,-0.0776399076,-0.0129115684,-0.1174754798,-0.0326450057],[-
0.0015634091,0.0309963748,0.0030699954,0.0250998698,-0.0931123495,-0.0225014891,-0.0774686038,-
0.0475768745],[0.0129500544,0.0356599353,-0.0125144441,-0.0188169945,-0.0661799088,0.0368166193,-
0.1156292632,0.0554054491],[0.0062011112,0.0128063438,-0.0244099833,-0.0727104247,-0.0146835009,-
0.0259854402,-0.0947751999,0.011442353],[0.0190492067,-0.0187272225,0.0457368046,-0.0230206568,-
0.1026833132,-0.0111416653,-0.0815310627,0.0057581617],[0.0429183543,0.0011941099,0.0008057182,-
0.061610911,-0.0891352072,0.0450408459,-0.0828220621,0.0327208899],[-0.0100156097,-
0.0446096547,0.0161210727,-0.0211098623,-0.0092519093,-0.0104807913,-0.0842147619,0.0085202316],[-
0.0015388664,0.0369447805,-0.0316719003,-0.0160452444,-0.0185811594,0.022215724,-
0.1362029761,0.0196939111],[-0.0043828255,-0.0051892484,-0.0405620411,-0.020046562,-
0.0957702845,-0.0233690925,-0.0848989114,0.0541716181],[0.0280559696,0.0005700476,-
0.0328265429,0.0220364444,0.030539047,-0.0166563876,0.0155522265,-0.0200448763],[0.0233413521,-
0.0373235866,-0.0206750352,-0.0256250873,-0.0491497479,0.0132879745,-0.100703612,0.03170399],[0.0024619398,0.0280608162,-
0.0210946053,0.0260587037,0.0045587812,0.0193805881,-0.1318970025,0.0579834767],[-0.0345870592,-
0.0012203066,-0.0320372172,-0.0359899588,-0.0393892862,-0.0036178678,-0.0803916231,-
0.0077602961],[-0.0385007709,0.0408850051,0.0327539444,-0.063881211,-0.0336246081,-
0.0460557714,-0.0942867622,0.0072741951],[-0.0031206983,0.0007216324,0.0119840298,-
0.097627461,-0.088842459,0.0227372032,-0.115960598,0.0427624248],[0.0174984057,0.0085226558,-
0.0363096781,-0.0492029749,-0.0409341604,-0.0284969937,-0.0751886219,0.0110676056],[-
0.0016668823,0.0221300963,0.0554900318,-0.0871766955,-0.0556310974,-0.0455159545,-0.063777566,-
0.0322403684],[0.031324394,0.0298806243,0.0565144718,-0.0162632931,-0.0474709682,0.0033299716,-
0.1447925121,0.0057630157],[0.0300826635,0.0100916857,0.0247726478,0.0075516687,-0.0427784547,-
0.0050428738,-0.0933085829,0.0140131107],[-0.0086429873,-0.0454958193,0.0346922912,0.026505664,-
0.0862411782,0.0473857149,-0.0348779708,-0.0183145478],[-0.0128766438,0.0098509705,-
0.040062733,0.031110106,-0.0421553552,-0.0158805288,-0.0655305088,-0.0007482105],[-0.0449128598,-
0.0197112951,0.0278943479,-0.0182558633,-0.0181404762,-0.0328727961,-0.0650151819,0.012640168],[-
0.0107919117,0.0400995612,-0.0031944313,0.021298036,-0.0168119706,-0.0131717259,-
0.1278857887,0.0147369802],[-0.0134499101,0.0214591976,0.0350737795,0.0236329325,0.0209473409,0.0107630836,-
0.1442049593,0.0037561236]],[0.0035855921,0.0059448453,-0.008031507,0.0608890243,0.0532443672,-
0.0005787634,0.0981881544,-0.0074393484],[[0.0541371442,-0.0233311709,0.03808631,-0.0074524796,-
0.0161964875,-0.0531380847],[0.0440565683,0.0084736859,0.020711517,0.0032913573,-0.0160148256,-
0.0212113783],[-0.0339465365,-0.0085006962,0.0432360955,0.0263918042,0.0323373266,0.0352469683],[0.0598729029,-
0.0117976377,0.030797217,0.0513003804,0.0737307891,-0.0350890942],[0.0600481182,0.0427516364,-
0.0121414801,0.0573144294,0.0142900757,0.0204450823],[0.0106062582,-0.024731813,0.0710651278,0.0536883213,0.0389724039,-
0.013540511],[0.0798899829,0.0936565548,0.1172549501,0.0896263868,0.1345335245,-
0.0165757835],[0.0281711705,0.039581731,0.0377913043,0.0001205466,-0.0142628271,0.0254401863]],[0.0620664246,0.0322465338,0.0560243502,0.0569727458,0.0697291493,-
0.0073743802],[[-0.0597119369],[-0.0197188053],[-0.0170194674],[-0.1285354942],[-

4.4. Prepare a Dataset 29

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

0.0675625801],[0.0375708863]],[-0.0585541092]]’}, ‘acc_image_file’: ‘/media/sf_shared/accuracy_job_17_result_13.png’,
‘created’: ‘2018-02-15 19:21:28’, ‘updated’: ‘2018-02-15 19:21:28’, ‘deleted’: ‘’}}

Get the Deep Neural Network Accuracy, JSON and Weights

This will display all the recent training runs in a list sorted by newest.

/opt/antinex/api/tests/get-recent-results.py

Here’s the training node in the list from the run above (yours will look a little different):

{
"acc_data": {

"accuracy": 66.09375
},
"acc_image_file": "/media/sf_shared/accuracy_job_17_result_13.png",
"created": "2018-02-15 19:21:28",
"deleted": "",
"error_data": null,
"id": 13,
"job_id": 17,
"model_json": "{\"class_name\": \"Sequential\", \"config\": [{\"class_name\": \

→˓"Dense\", \"config\": {\"name\": \"dense_1\", \"trainable\": true, \"batch_input_
→˓shape\": [null, 68], \"dtype\": \"float32\", \"units\": 8, \"activation\": \"relu\",
→˓ \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"RandomUniform\", \
→˓"config\": {\"minval\": -0.05, \"maxval\": 0.05, \"seed\": null}}, \"bias_
→˓initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_regularizer\":
→˓null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_
→˓constraint\": null, \"bias_constraint\": null}}, {\"class_name\": \"Dense\", \
→˓"config\": {\"name\": \"dense_2\", \"trainable\": true, \"units\": 6, \"activation\
→˓": \"relu\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \
→˓"RandomUniform\", \"config\": {\"minval\": -0.05, \"maxval\": 0.05, \"seed\": null}}
→˓, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_
→˓regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \
→˓"kernel_constraint\": null, \"bias_constraint\": null}}, {\"class_name\": \"Dense\",
→˓ \"config\": {\"name\": \"dense_3\", \"trainable\": true, \"units\": 1, \
→˓"activation\": \"sigmoid\", \"use_bias\": true, \"kernel_initializer\": {\"class_
→˓name\": \"RandomUniform\", \"config\": {\"minval\": -0.05, \"maxval\": 0.05, \"seed\
→˓": null}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \
→˓"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\":
→˓null, \"kernel_constraint\": null, \"bias_constraint\": null}}], \"keras_version\":
→˓\"2.1.4\", \"backend\": \"tensorflow\"}",

"model_weights": {
"weights": "[[[-0.0173000526,-0.0064027878,-0.0169708095,0.0157266911,0.

→˓0662872419,-0.0328218415,0.1295523047,0.0344657972],[-0.0088931685,-0.0385553166,0.
→˓0037408469,0.0977382362,0.0767394751,-0.05592921,0.0982304141,0.014463977],[-0.
→˓0322886854,-0.0368546396,0.0107642207,-0.0718934014,-0.0221321229,0.0071108998,-0.
→˓1037670299,-0.0087477071],[0.0416910201,-0.0537477769,0.019645201,0.0635252744,0.
→˓0881028324,-0.0220302157,0.0654686466,0.012742796],[-0.0213366691,-0.0323441252,-0.
→˓0488818437,0.087537989,0.0398393236,-0.0530910976,0.1179806888,-0.0108120786],[-0.
→˓0286345202,-0.0170552637,-0.01019214,0.096555151,0.0748246536,-0.0755968541,0.
→˓0934303999,-0.0308071431],[0.0030201294,-0.0528637655,-0.0346440263,-0.0669601113,-
→˓0.0656459033,0.0276927054,-0.0825652406,-0.0032823205],[-0.0056472942,-0.0407883152,
→˓0.0274266116,-0.0543933474,-0.0784520358,-0.0397142395,-0.1286949962,0.034545105],
→˓[0.0393268168,-0.0346527621,0.0186092779,-0.034386944,-0.0663760602,-0.0158903264,-
→˓0.0826205313,0.0005784247],[-0.0380487517,-0.0278219841,-0.0147631671,-0.016108444,-
→˓0.0466402136,0.0435810089,-0.1015856043,-0.0084425164],[-0.0488428921,-0.0293625016,
→˓0.026683338,-0.0435961001,-0.1025879383,-0.0353616923,-0.0771325007,0.0552083217],[-
→˓0.0025817794,-0.0247298032,0.0419541076,-0.0949794203,-0.026031835,0.0116581451,-0.
→˓1078904942,0.0487319119],[-0.0153548149,0.0402287059,-0.002908526,-0.0893430561,-0.
→˓0536826178,-0.0266579315,-0.1445246637,-0.0359159745],[0.0435531884,-0.025654668,-0.
→˓038579829,-0.0826740116,-0.0893285349,0.0105355503,-0.066000931,-0.034613315],[-0.
→˓0488474704,-0.0199130196,0.0422015861,-0.0321295559,-0.0455789417,0.0059766336,-0.
→˓0860127956,0.0176941063],[0.0074663856,0.0338624604,-0.0018213085,-0.0542690866,-0.
→˓0301753003,-0.0390444547,-0.0836630166,0.0284509044],[-0.0511877276,-0.0219058525,-
→˓0.0340818726,-0.0345237553,-0.0381731167,-0.0017185912,-0.1276020557,0.0149726318],
→˓[0.0081929648,0.0145618366,0.0185622554,-0.1079799682,-0.0896312669,-0.0002979506,-
→˓0.098251991,0.0011839687],[-0.0210764948,0.0120229824,0.0251360014,-0.0380748846,-0.
→˓0478647351,-0.0444115773,-0.0653204471,-0.0378449708],[-0.0005556387,-0.0434047244,
→˓0.0310283601,-0.0910413787,-0.0988587886,-0.0266462117,-0.0923515782,-0.0181508325],
→˓[-0.0096717393,0.0347021855,0.018473519,-0.0408929698,-0.0938989446,0.0198299177,-0.
→˓0886605158,-0.0234003849],[0.0162979532,-0.0537309386,-0.0134870214,-0.0631217659,-
→˓0.0191594698,0.0320905186,-0.1432752609,0.0562950373],[-0.0522111617,-0.0289670061,-
→˓0.0153701846,-0.0334702469,-0.0374529734,-0.0267687216,-0.0723697096,0.0163344964],
→˓[-0.0087670712,-0.0421352983,0.0385387503,-0.1075451523,-0.0103809508,-0.0249420628,
→˓-0.12667723,-0.0193419773],[-0.0398854949,0.0253311843,0.0518782474,-0.0364522263,-
→˓0.0960612893,-0.0428358912,-0.0894641876,0.0275488924],[0.0149986902,-0.021600645,0.
→˓0153730037,-0.0267963409,-0.098190546,0.0403022617,-0.0808125436,0.0382996574],[-0.
→˓0023344536,-0.0428262725,0.0202057045,-0.0766336545,-0.0849173516,0.0463943556,-0.
→˓1428285539,0.0519381054],[0.042711705,-0.050877668,-0.0172832552,-0.0740391836,-0.
→˓0718216076,-0.0103346519,-0.0579395629,0.0442523919],[0.0060770563,0.0171900522,-0.
→˓0219493955,0.1135827675,0.1139239743,0.0393700376,0.1700653881,-0.0374217182],[0.
→˓0302413236,0.0040957471,0.044197157,-0.0525682308,-0.0123297134,-0.0051418832,-0.
→˓1161182448,0.0289911013],[0.0080568166,-0.0293921139,0.0368611924,-0.031907361,-0.
→˓0080400519,0.0517797805,0.0480450913,0.0234247819],[0.0165923182,-0.0182517283,-0.
→˓0100761745,-0.1003762558,-0.0173195116,-0.0350859612,-0.085473381,-0.0150983492],[0.
→˓0067120269,-0.053849794,0.0544353202,-0.0249461662,-0.0422286354,0.0218810663,-0.
→˓1306264699,-0.0048307315],[0.0156460945,0.0277566575,-0.024820514,-0.1039614528,-0.
→˓0260938685,-0.0021631087,-0.0492782556,0.0043323012],[0.0227578375,0.0221582968,0.
→˓0007841409,-0.0886592641,-0.0884859934,0.0525981635,-0.0798395574,0.0458145142],[0.
→˓0236985628,-0.0366411731,0.0548207089,-0.0146643622,-0.0687453374,-0.0444763452,-0.
→˓1426427066,-0.03775746],[-0.0252918322,0.0014541645,0.0016110033,-0.0387289189,-0.
→˓0257748235,-0.0430029631,-0.1233881786,0.0235356223],[0.0122827264,0.0251069088,-0.
→˓0027357663,-0.1024575979,-0.0682099089,-0.0049612666,-0.0609179363,0.0038837341],[-
→˓0.0354516096,-0.033333566,0.0563913882,-0.0726352409,-0.0318466015,0.037089549,-0.
→˓074870795,0.0281760283],[-0.0080876146,-0.0468189716,0.0424663126,-0.0533910729,-0.
→˓0204824172,0.0296455175,-0.0709483698,0.0496929996],[-0.0302802306,-0.0335655995,-0.
→˓0102529833,0.1016696915,0.0252007376,-0.0023698036,0.0479990542,-0.0358106755],[-0.
→˓0043822778,-0.0191927347,0.0084026409,-0.0475930236,-0.0715683997,-0.0273918658,-0.
→˓1038119346,0.0135136517],[0.0292350873,-0.0316817425,0.0423877165,0.0283667725,-0.
→˓0179847665,-0.0016444682,-0.0026728681,0.0337618776],[-0.037272051,-0.0279664211,0.
→˓0315952115,0.0440362394,0.0267583579,0.0005767916,0.0571529903,0.0346558914],[0.
→˓0195410363,-0.0069632046,-0.0175475031,-0.0679977313,-0.0776399076,-0.0129115684,-0.
→˓1174754798,-0.0326450057],[-0.0015634091,0.0309963748,0.0030699954,0.0250998698,-0.
→˓0931123495,-0.0225014891,-0.0774686038,-0.0475768745],[0.0129500544,0.0356599353,-0.
→˓0125144441,-0.0188169945,-0.0661799088,0.0368166193,-0.1156292632,0.0554054491],[0.
→˓0062011112,0.0128063438,-0.0244099833,-0.0727104247,-0.0146835009,-0.0259854402,-0.
→˓0947751999,0.011442353],[0.0190492067,-0.0187272225,0.0457368046,-0.0230206568,-0.
→˓1026833132,-0.0111416653,-0.0815310627,0.0057581617],[0.0429183543,0.0011941099,0.
→˓0008057182,-0.061610911,-0.0891352072,0.0450408459,-0.0828220621,0.0327208899],[-0.
→˓0100156097,-0.0446096547,0.0161210727,-0.0211098623,-0.0092519093,-0.0104807913,-0.
→˓0842147619,0.0085202316],[-0.0015388664,0.0369447805,-0.0316719003,-0.0160452444,-0.
→˓0185811594,0.022215724,-0.1362029761,0.0196939111],[-0.0043828255,-0.0051892484,-0.
→˓0405620411,-0.020046562,-0.0957702845,-0.0233690925,-0.0848989114,0.0541716181],[0.
→˓0280559696,0.0005700476,-0.0328265429,0.0220364444,0.030539047,-0.0166563876,0.
→˓0155522265,-0.0200448763],[0.0233413521,-0.0373235866,-0.0206750352,-0.0256250873,-
→˓0.0491497479,0.0132879745,-0.100703612,0.03170399],[0.0024619398,0.0280608162,-0.
→˓0210946053,0.0260587037,0.0045587812,0.0193805881,-0.1318970025,0.0579834767],[-0.
→˓0345870592,-0.0012203066,-0.0320372172,-0.0359899588,-0.0393892862,-0.0036178678,-0.
→˓0803916231,-0.0077602961],[-0.0385007709,0.0408850051,0.0327539444,-0.063881211,-0.
→˓0336246081,-0.0460557714,-0.0942867622,0.0072741951],[-0.0031206983,0.0007216324,0.
→˓0119840298,-0.097627461,-0.088842459,0.0227372032,-0.115960598,0.0427624248],[0.
→˓0174984057,0.0085226558,-0.0363096781,-0.0492029749,-0.0409341604,-0.0284969937,-0.
→˓0751886219,0.0110676056],[-0.0016668823,0.0221300963,0.0554900318,-0.0871766955,-0.
→˓0556310974,-0.0455159545,-0.063777566,-0.0322403684],[0.031324394,0.0298806243,0.
→˓0565144718,-0.0162632931,-0.0474709682,0.0033299716,-0.1447925121,0.0057630157],[0.
→˓0300826635,0.0100916857,0.0247726478,0.0075516687,-0.0427784547,-0.0050428738,-0.
→˓0933085829,0.0140131107],[-0.0086429873,-0.0454958193,0.0346922912,0.026505664,-0.
→˓0862411782,0.0473857149,-0.0348779708,-0.0183145478],[-0.0128766438,0.0098509705,-0.
→˓040062733,0.031110106,-0.0421553552,-0.0158805288,-0.0655305088,-0.0007482105],[-0.
→˓0449128598,-0.0197112951,0.0278943479,-0.0182558633,-0.0181404762,-0.0328727961,-0.
→˓0650151819,0.012640168],[-0.0107919117,0.0400995612,-0.0031944313,0.021298036,-0.
→˓0168119706,-0.0131717259,-0.1278857887,0.0147369802],[-0.0134499101,0.0214591976,0.
→˓0350737795,0.0236329325,0.0209473409,0.0107630836,-0.1442049593,0.0037561236]],[0.
→˓0035855921,0.0059448453,-0.008031507,0.0608890243,0.0532443672,-0.0005787634,0.
→˓0981881544,-0.0074393484],[[0.0541371442,-0.0233311709,0.03808631,-0.0074524796,-0.
→˓0161964875,-0.0531380847],[0.0440565683,0.0084736859,0.020711517,0.0032913573,-0.
→˓0160148256,-0.0212113783],[-0.0339465365,-0.0085006962,0.0432360955,0.0263918042,0.
→˓0323373266,0.0352469683],[0.0598729029,-0.0117976377,0.030797217,0.0513003804,0.
→˓0737307891,-0.0350890942],[0.0600481182,0.0427516364,-0.0121414801,0.0573144294,0.
→˓0142900757,0.0204450823],[0.0106062582,-0.024731813,0.0710651278,0.0536883213,0.
→˓0389724039,-0.013540511],[0.0798899829,0.0936565548,0.1172549501,0.0896263868,0.
→˓1345335245,-0.0165757835],[0.0281711705,0.039581731,0.0377913043,0.0001205466,-0.
→˓0142628271,0.0254401863]],[0.0620664246,0.0322465338,0.0560243502,0.0569727458,0.
→˓0697291493,-0.0073743802],[[-0.0597119369],[-0.0197188053],[-0.0170194674],[-0.
→˓1285354942],[-0.0675625801],[0.0375708863]],[-0.0585541092]]"

(continues on next page)

30 Chapter 4. API Examples

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

},
"status": "finished",
"updated": "2018-02-15 19:21:28",
"user_id": 1,
"user_name": "root",
"version": 1

}

4.4.5 Protecting Vue with a Deep Neural Network

This guide is a walkthrough for preparing and training a deep neural network for defending Vue application servers.
The accuracy is currently 83% without tuning the DNN or adding in actual exploits or sql-injection attacks into the
attack datasets. Please note the non-attack training data is recorded from a multi-user simulation against a Django
application server. Sorry I have not had enough free time to create a true Vue non-attack dataset (PRs welcome
though!).

In the future I am looking to extend the full datasets to include the TCP payload data
stream (hex bytes) for sentiment analysis using an embedding Keras layer (https://blog.keras.io/
using-pre-trained-word-embeddings-in-a-keras-model.html). I imagine deserialized payloads will only increase the
default accuracy, but it is only an assumption for now.

Setup

1. Run these commands to clone the repositories to the same directories for making debugging easier for all users.

mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/train-ai-with-django-swagger-jwt.git /
→˓opt/antinex/api
git clone https://github.com/jay-johnson/network-pipeline-datasets.git /opt/
→˓antinex/datasets
git clone https://github.com/jay-johnson/antinex-datasets.git /opt/antinex/
→˓antinex-datasets

2. Start the REST API

If the REST API is not running, please start it in a new terminal so it can process the prepare and training
requests.

cd /opt/antinex/api
source ~/.venvs/venvdrfpipeline/bin/activate
./install.sh
./start.sh

(Optional) Prepare Attack Dataset

If you want to prepare your own attack dataset run these commands with the REST API running locally:

source ~/.venvs/venvdrfpipeline/bin/activate
export TEST_DATA=/opt/antinex/antinex-datasets/v1/webapps/vue/configs/vue-attack-
→˓prepare-v1.json
/opt/antinex/api/tests/build-new-dataset.py

Check the files were updated:

4.4. Prepare a Dataset 31

https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

ls -l /opt/antinex/antinex-datasets/v1/webapps/vue/inputs/attack/
total 5752
-rw-rw-r-- 1 jay jay 2077 Feb 15 11:28 cleaned_v1_vue_attack_metadata.json
-rw-rw-r-- 1 jay jay 2408 Feb 15 11:28 fulldata_v1_vue_attack_metadata.json
-rw-rw-r-- 1 jay jay 553131 Feb 15 11:28 v1_vue_cleaned_attack.csv
-rw-rw-r-- 1 jay jay 5321567 Feb 15 11:28 v1_vue_full_attack.csv

(Optional) Prepare Full Dataset

If you want to prepare your own full dataset run these commands with the REST API running locally:

source ~/.venvs/venvdrfpipeline/bin/activate
export TEST_DATA=/opt/antinex/antinex-datasets/v1/webapps/vue/configs/vue-prepare-v1.
→˓json
/opt/antinex/api/tests/build-new-dataset.py

Confirm Dataset is Ready

/opt/antinex/antinex-datasets/tools/describe-v1-training.py /opt/antinex/antinex-
→˓datasets/v1/webapps/vue/training-ready/v1_vue_cleaned.csv

Hopefully your dataset has both attack and non-attack records like:

2018-02-15 11:29:11,207 - describe-training-data - INFO - total records=25600
→˓attack=4400 nonattack=21200 percent_attack=17.19% percent_nonattack=82.81%

What you don’t want to see is this in the output:

2018-02-15 08:47:41,389 - describe-training-data - INFO - total records=21200
→˓attack=0 nonattack=21200 percent_attack=0.00% percent_nonattack=100.00%

That means the prepare step failed to add the attack data into the dataset correctly. Please go back to the Prepare
Dataset step and review paths to the files are correct.

Train Dataset

source ~/.venvs/venvdrfpipeline/bin/activate
export TEST_DATA=/opt/antinex/antinex-datasets/v1/webapps/vue/configs/vue-train-v1.
→˓json
/opt/antinex/api/tests/create-keras-dnn.py

From the logs taken during creation of this doc, the model is 83% accurate at predicting attack records.

INFO:create-keras-dnn:Logging in user url=http://localhost:8010/api-token-auth/ INFO:create-keras-dnn:logged in
user=root token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyX2lkIjoxLCJ1c2VybmFtZSI6InJvb3QiLCJleHAiOjE1MTg3MjMyNjUsImVtYWlsIjoicm9vdEBlbWFpbC5jb20ifQ.CQKmaAvVu3RhGi1_WzMKYlOibVYfEgKdDwcL2clYdNM
INFO:create-keras-dnn:building post data INFO:create-keras-dnn:Running ML Job url=http://localhost:8010/ml/
test_data={‘csv_file’: ‘/opt/antinex/antinex-datasets/v1/webapps/vue/training-ready/v1_vue_cleaned.csv’,
‘meta_file’: ‘/opt/antinex/antinex-datasets/v1/webapps/vue/training-ready/cleaned_v1_vue_metadata.json’, ‘ti-
tle’: ‘Vue - Keras DNN - Dataset v1’, ‘desc’: ‘Training Vue DNN using Attack and Non-attack data captured using
the network-pipeline’, ‘ds_name’: ‘cleaned’, ‘algo_name’: ‘dnn’, ‘ml_type’: ‘keras’, ‘predict_feature’: ‘label_value’,
‘training_data’: ‘{}’, ‘pre_proc’: ‘{}’, ‘post_proc’: ‘{}’, ‘meta_data’: ‘{}’, ‘version’: 1} INFO:create-keras-
dnn:SUCCESS - Post Response status=201 reason=Created INFO:create-keras-dnn:{‘job’: {‘id’: 18, ‘user_id’: 1,

32 Chapter 4. API Examples

INFO:create-keras-dnn:Logging

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

‘user_name’: ‘root’, ‘title’: ‘Vue - Keras DNN - Dataset v1’, ‘desc’: ‘Training Vue DNN using Attack and Non-attack
data captured using the network-pipeline’, ‘ds_name’: ‘cleaned’, ‘algo_name’: ‘dnn’, ‘ml_type’: ‘keras’, ‘status’:
‘initial’, ‘control_state’: ‘active’, ‘predict_feature’: ‘label_value’, ‘training_data’: {}, ‘pre_proc’: {}, ‘post_proc’:
{}, ‘meta_data’: {}, ‘tracking_id’: ‘ml_ad7d1a31-c7b3-47ec-9c69-3e55a12c7bf3’, ‘version’: 1, ‘created’: ‘2018-
02-15 19:29:25’, ‘updated’: ‘2018-02-15 19:29:25’, ‘deleted’: ‘’}, ‘results’: {‘id’: 14, ‘user_id’: 1, ‘user_name’:
‘root’, ‘job_id’: 18, ‘status’: ‘finished’, ‘version’: 1, ‘acc_data’: {‘accuracy’: 83.1640625}, ‘error_data’: None,
‘model_json’: ‘{“class_name”: “Sequential”, “config”: [{“class_name”: “Dense”, “config”: {“name”: “dense_4”,
“trainable”: true, “batch_input_shape”: [null, 68], “dtype”: “float32”, “units”: 8, “activation”: “relu”, “use_bias”:
true, “kernel_initializer”: {“class_name”: “RandomUniform”, “config”: {“minval”: -0.05, “maxval”: 0.05, “seed”:
null}}, “bias_initializer”: {“class_name”: “Zeros”, “config”: {}}, “kernel_regularizer”: null, “bias_regularizer”:
null, “activity_regularizer”: null, “kernel_constraint”: null, “bias_constraint”: null}}, {“class_name”: “Dense”,
“config”: {“name”: “dense_5”, “trainable”: true, “units”: 6, “activation”: “relu”, “use_bias”: true, “ker-
nel_initializer”: {“class_name”: “RandomUniform”, “config”: {“minval”: -0.05, “maxval”: 0.05, “seed”: null}},
“bias_initializer”: {“class_name”: “Zeros”, “config”: {}}, “kernel_regularizer”: null, “bias_regularizer”: null,
“activity_regularizer”: null, “kernel_constraint”: null, “bias_constraint”: null}}, {“class_name”: “Dense”,
“config”: {“name”: “dense_6”, “trainable”: true, “units”: 1, “activation”: “sigmoid”, “use_bias”: true, “ker-
nel_initializer”: {“class_name”: “RandomUniform”, “config”: {“minval”: -0.05, “maxval”: 0.05, “seed”: null}},
“bias_initializer”: {“class_name”: “Zeros”, “config”: {}}, “kernel_regularizer”: null, “bias_regularizer”: null,
“activity_regularizer”: null, “kernel_constraint”: null, “bias_constraint”: null}}], “keras_version”: “2.1.4”,
“backend”: “tensorflow”}’, ‘model_weights’: {‘weights’: ‘[[[0.0964929983,0.0837596282,0.0513114333,-
0.0693184286,-0.0125864763,0.0574291162,-0.0161194559,0.0421481095],[0.0764627904,0.0430329069,-
0.0191652663,0.0074863322,-0.0002829469,0.1027121916,-0.0398681201,-0.0201492198],[-0.056526497,-
0.020370299,-0.0472459234,-0.0560302138,0.0236291252,-0.0822693929,-0.0890297815,-0.0480410382],[-
0.0064245733,0.02736664,-0.0115312617,-0.0152309267,0.0057650399,0.0353901014,-0.0304064881,-
0.014901977],[0.0062483978,0.0532563478,0.0526493713,0.00063548,0.0492007136,0.0401249528,-
0.0732960626,0.0336591713],[0.0808463618,0.0222757515,0.0604787916,-0.0440429412,0.0354416184,0.1061460897,0.0776203051,-
0.0438821949],[-0.0034223702,-0.031368304,-0.0190553498,-0.023251174,0.0308189727,-
0.0795371532,-0.0777133033,0.01265141],[-0.0686491504,0.0194620099,-0.0424295217,-
0.0240028482,-0.0144291371,-0.0117279524,-0.0344395377,-0.0395662189],[-0.0660949051,-
0.0486420654,0.0097997449,0.0116964141,0.0569563545,-0.0330945961,-0.0009582887,0.0109461136],[-
0.0271332134,-0.0048795654,0.0104634706,-0.0352833308,0.0343606696,-0.0715944916,-
0.0167990662,0.0252644829],[-0.0699779168,-0.0437729359,-0.014376387,-0.0475340076,-
0.010354978,-0.0230973363,-0.0009265427,-0.0299541708],[-0.0219055898,-0.0522471406,-
0.0189603493,-0.0512510501,-0.0005330394,-0.0555729195,-0.0520991385,-0.0211805589],[-
0.0404028483,0.020369729,0.0023353414,0.0119193504,-0.0124673871,-0.0115194013,0.0054978556,-
0.028604554],[-0.0511647239,-0.0261075459,-0.0467265062,0.0189402122,0.0549614727,-0.0663635805,-
0.0279217064,0.0042245188],[-0.0806629583,0.0107657518,0.0117750419,-0.0536228344,0.0310879052,-
0.0637154654,-0.0681177229,0.0161142722],[-0.0744192228,-0.0230462849,0.0186079368,-
0.0033951802,0.0216188282,-0.062285006,-0.062960647,0.0300793424],[-0.0315857232,-0.0647951886,-
0.0148812886,-0.0678566247,0.023202572,-0.0827157721,-0.013793733,-0.0130123906],[-
0.0297478233,-0.0688403174,0.0396807306,-0.0757085979,0.031263493,-0.0002234936,-0.0909571871,-
0.0323583074],[-0.0240834001,-0.0398418121,-0.0064964825,-0.0367884561,0.0719116777,-
0.0823321193,-0.0645215511,0.0338410847],[-0.0384184793,-0.0576236956,-0.019627776,-0.0506528094,-
0.0163098071,-0.0409412533,-0.041446805,0.0172828659],[-0.005851123,-0.0429788493,-0.0252392255,-
0.073766917,0.0097925663,-0.0794945806,-0.0849412307,0.0014261433],[-0.0512101054,0.0005189396,-
0.0271312632,-0.0270303208,0.0178172924,-0.0880423188,-0.0889234915,-0.0421689749],[-
0.0717964247,-0.0206637289,-0.0067394814,-0.0284654628,0.0247239321,-0.0477216393,-
0.036414776,0.0200105682],[-0.0943818614,-0.0469460264,0.0279882532,-0.0619334579,0.0121557433,-
0.0768882185,0.0002953591,0.0396316908],[-0.0686878562,-0.0194259193,0.0096589588,-0.0417566299,-
0.0048376634,-0.0504943505,-0.0156595726,0.027880745],[-0.0523356088,-0.0725596026,0.0059417831,-
0.0251557883,-0.0038264154,-0.0179003626,-0.0591997802,0.0274024624],[-0.0341782831,-
0.0221797936,0.0042649712,-0.0477346219,0.0461222231,-0.0023178295,-0.03149179,0.0011711826],[-
0.073523894,0.020247506,0.0248407796,0.0047891312,0.0758228377,-0.0405860767,-
0.0173077062,0.0444364958],[0.0393536985,0.0223959032,0.0194161702,0.0163059514,0.0072390498,0.0256230235,0.0177581478,-

4.4. Prepare a Dataset 33

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

0.0273305401],[-0.0929955989,0.0247371849,-0.0009080072,-0.0237545576,0.0517009124,-
0.019001672,-0.0027636925,0.0225250944],[-0.0503246076,0.0514643453,-0.034101136,0.071626991,-
0.0102834394,-0.0852171034,0.0230983458,-0.004897465],[-0.0262203328,-0.0664628223,-0.0034848654,-
0.0033428837,0.0001543516,-0.0749761909,-0.024853928,0.0465056859],[-0.052637279,-0.0315136686,-
0.0437926725,-0.0341987237,0.0392551571,-0.0518464595,-0.0266457852,0.0146500943],[-
0.0341906585,-0.0460761786,-0.0180298146,-0.0055014049,0.0707753003,-0.0777451321,-
0.0366662145,0.0145203276],[-0.0122610182,0.014549084,-0.0121618919,0.0285700168,0.0231714714,-
0.0371087231,0.0220328253,-0.0466214307],[-0.0198020525,0.0109219337,0.0416364111,-
0.0783106089,0.0728293508,-0.0356889144,-0.0880245343,0.0330911092],[-0.0854380801,-
0.0669428557,-0.0214084946,-0.0081647681,0.0233404748,-0.0217991099,-0.0376962982,-
0.042799335],[-0.0452309586,-0.0024355939,0.0175608397,-0.0052607814,0.0183441378,-0.0620779246,-
0.0699491203,-0.0118549634],[-0.0959726647,0.0476075932,-0.0379351601,0.008159698,0.0384081416,-
0.0612908602,-0.0189263411,-0.0454253554],[-0.0053411066,-0.0094355131,-0.0510591529,-
0.0221638251,0.0046492857,-0.0514930561,-0.0705555007,-0.020327853],[0.0661738142,-
0.0029260954,-0.0595169291,0.0101059973,-0.0022012119,0.049445834,0.0558575578,-0.012022947],[-
0.0830700099,0.0212585274,-0.0389494337,-0.0166049339,0.0477221608,-0.0867467299,-
0.0052994671,0.0331948586],[-0.0076975222,0.0475708768,-0.022361204,0.0159589462,0.0034970916,-
0.0780191272,0.0727450103,0.0052784681],[-0.0611799173,-0.0223675836,-0.0501373671,0.0420941673,-
0.0056689265,-0.0148042021,0.0729248822,0.0337781236],[-0.0021687131,0.0187189635,-
0.0138026681,0.0335950628,0.0171724465,-0.0114344545,0.0064723557,0.014866543],[-
0.0029786164,0.0592048354,-0.0431581549,0.0631211698,-0.0203074273,-0.0943428278,0.0607772991,0.0175965521],[-
0.0953431055,0.0004848846,-0.055826772,0.0066280495,0.0397272743,-0.056723319,-
0.0556911081,0.0250450671],[-0.0736271068,-0.0255948883,0.0372888483,0.0277335718,-
0.0149522563,-0.0228647534,-0.0830083936,0.0032964509],[-0.062650837,-0.0202989262,-
0.0077688964,-0.0318020023,0.0132382195,0.0001132841,-0.043601539,0.0263965204],[-0.0097646713,-
0.0558951087,-0.039418485,-0.0255730916,0.013469019,-0.0136131318,-0.0810244158,0.0127038872],[-
0.0612644814,-0.0250901058,0.0282239243,0.0373365022,0.0209282301,-0.0226692595,-
0.0864989087,-0.0179349761],[-0.0924655274,0.0218485277,-0.0298216268,-0.0057617133,-
0.0296175014,-0.0120711923,-0.0545658804,0.0150848003],[-0.0751573443,-0.0002987361,-
0.0057580415,0.0093203867,-0.0140915299,-0.0325664468,-0.0779319704,0.0292233229],[-
0.0079788342,0.0444301628,0.0362950899,0.0386882909,0.0018038042,-0.048700463,0.0057461374,-
0.041268073],[-0.0221946761,-0.050303746,0.0298334453,-0.0346691869,0.0488329567,-
0.0676441416,-0.0486205034,0.0179271474],[-0.0806570575,-0.0448458456,-0.0144681996,-
0.0426183194,-0.0061101187,-0.0247607604,0.0180130191,0.0609768555],[-0.0479587466,-
0.0541830994,0.0020282909,0.0168216806,0.0308838021,-0.0877256617,-0.013448243,0.0173823014],[-
0.065826796,-0.0472236201,-0.0440701954,-0.002680534,0.0611480027,-0.0693870261,-0.0684818774,-
0.0339303389],[-0.0024183108,-0.0320040435,0.0125231585,-0.0658573955,0.0589915328,-
0.0091869226,-0.0402693488,-0.001413801],[-0.0122722089,-0.0643372461,-0.0261148885,-
0.0108729294,0.0712984875,-0.0828262791,-0.0310833678,0.0446092822],[-0.0557892919,0.0059863473,-
0.0507959016,-0.0419340506,0.0633320585,-0.0045545883,-0.0016710822,0.0357435755],[-0.0203432944,-
0.0151491342,-0.0224984549,-0.0745795816,0.0090752272,-0.0742223784,0.0066466844,-0.0276446585],[-
0.0677567497,0.0357993916,0.0044564921,-0.0539436862,-0.0110100135,0.0332751572,0.0323642008,0.0356529839],[-
0.0750699639,-0.0045500868,-0.0511593483,-0.0463683642,0.0122727454,-0.0276447199,0.0391405001,0.0306293499],[-
0.0934526324,-0.039043989,-0.0426228829,-0.0394503661,-0.0389413275,-0.0964915231,0.0093822209,0.0348296985],[-
0.0690298229,-0.0508973859,0.0259087458,-0.0228281599,-0.0076745511,-0.0086752577,-
0.0901542827,0.0304441247],[-0.0338399112,-0.0072802799,-0.0317518972,-0.0181066915,0.0328182429,-
0.0979935005,0.0129396953,0.0413899347],[-0.0805611685,0.0028219493,0.0320406146,0.0552994162,-
0.0416063294,-0.0664851591,0.0082092546,-0.0352456868]],[0.0499761477,0.0235879347,0.0078678448,0.0307559464,-
0.0262398124,0.0492662415,0.0417507663,0.0019115364],[[-0.0497738235,0.082566157,0.0858044401,0.0807759464,-
0.0281407479,-0.0240644943],[-0.0080805197,0.0533784255,0.0423657559,0.0844753161,-
0.0132133355,0.0310063623],[0.0433566235,0.024253225,0.0388046354,0.1547681987,-0.0076785884,-
0.0361264572],[-0.0191759467,0.0495774075,0.096243605,0.1220689639,0.0066543957,-
0.0348133594],[-0.0043437853,0.000867462,0.0509670079,0.0299713202,-0.0031723627,-
0.005397758],[-0.0177731514,0.0803218558,0.0660849884,0.13484326,-0.0441330299,0.0192133877],[-

34 Chapter 4. API Examples

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

0.0007352605,0.0217755958,0.0690242201,0.0731370077,0.0624744706,-0.0324748941],[-
0.0474479459,0.0553567745,-0.0198244397,-0.010604023,0.0421101451,0.0116976937]],[0.0,0.0703127161,0.0674306825,0.0584900826,0.0331571028,-
0.0126846386],[[0.0055085532],[-0.1386123598],[-0.0565749854],[-0.0520785004],[-
0.066370979],[0.0197858457]],[-0.0406405143]]’}, ‘acc_image_file’: ‘/media/sf_shared/accuracy_job_18_result_14.png’,
‘created’: ‘2018-02-15 19:30:36’, ‘updated’: ‘2018-02-15 19:30:36’, ‘deleted’: ‘’}}

Get the Deep Neural Network Accuracy, JSON and Weights

This will display all the recent training runs in a list sorted by newest.

/opt/antinex/api/tests/get-recent-results.py

Here’s the training node in the list from the run above (yours will look a little different):

{
"acc_data": {

"accuracy": 83.1640625
},
"acc_image_file": "/media/sf_shared/accuracy_job_18_result_14.png",
"created": "2018-02-15 19:30:36",
"deleted": "",
"error_data": null,
"id": 14,
"job_id": 18,
"model_json": "{\"class_name\": \"Sequential\", \"config\": [{\"class_name\": \

→˓"Dense\", \"config\": {\"name\": \"dense_4\", \"trainable\": true, \"batch_input_
→˓shape\": [null, 68], \"dtype\": \"float32\", \"units\": 8, \"activation\": \"relu\",
→˓ \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"RandomUniform\", \
→˓"config\": {\"minval\": -0.05, \"maxval\": 0.05, \"seed\": null}}, \"bias_
→˓initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_regularizer\":
→˓null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_
→˓constraint\": null, \"bias_constraint\": null}}, {\"class_name\": \"Dense\", \
→˓"config\": {\"name\": \"dense_5\", \"trainable\": true, \"units\": 6, \"activation\
→˓": \"relu\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \
→˓"RandomUniform\", \"config\": {\"minval\": -0.05, \"maxval\": 0.05, \"seed\": null}}
→˓, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_
→˓regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \
→˓"kernel_constraint\": null, \"bias_constraint\": null}}, {\"class_name\": \"Dense\",
→˓ \"config\": {\"name\": \"dense_6\", \"trainable\": true, \"units\": 1, \
→˓"activation\": \"sigmoid\", \"use_bias\": true, \"kernel_initializer\": {\"class_
→˓name\": \"RandomUniform\", \"config\": {\"minval\": -0.05, \"maxval\": 0.05, \"seed\
→˓": null}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \
→˓"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\":
→˓null, \"kernel_constraint\": null, \"bias_constraint\": null}}], \"keras_version\":
→˓\"2.1.4\", \"backend\": \"tensorflow\"}",

"model_weights": {
"weights": "[[[0.0964929983,0.0837596282,0.0513114333,-0.0693184286,-0.

→˓0125864763,0.0574291162,-0.0161194559,0.0421481095],[0.0764627904,0.0430329069,-0.
→˓0191652663,0.0074863322,-0.0002829469,0.1027121916,-0.0398681201,-0.0201492198],[-0.
→˓056526497,-0.020370299,-0.0472459234,-0.0560302138,0.0236291252,-0.0822693929,-0.
→˓0890297815,-0.0480410382],[-0.0064245733,0.02736664,-0.0115312617,-0.0152309267,0.
→˓0057650399,0.0353901014,-0.0304064881,-0.014901977],[0.0062483978,0.0532563478,0.
→˓0526493713,0.00063548,0.0492007136,0.0401249528,-0.0732960626,0.0336591713],[0.
→˓0808463618,0.0222757515,0.0604787916,-0.0440429412,0.0354416184,0.1061460897,0.
→˓0776203051,-0.0438821949],[-0.0034223702,-0.031368304,-0.0190553498,-0.023251174,0.
→˓0308189727,-0.0795371532,-0.0777133033,0.01265141],[-0.0686491504,0.0194620099,-0.
→˓0424295217,-0.0240028482,-0.0144291371,-0.0117279524,-0.0344395377,-0.0395662189],[-
→˓0.0660949051,-0.0486420654,0.0097997449,0.0116964141,0.0569563545,-0.0330945961,-0.
→˓0009582887,0.0109461136],[-0.0271332134,-0.0048795654,0.0104634706,-0.0352833308,0.
→˓0343606696,-0.0715944916,-0.0167990662,0.0252644829],[-0.0699779168,-0.0437729359,-
→˓0.014376387,-0.0475340076,-0.010354978,-0.0230973363,-0.0009265427,-0.0299541708],[-
→˓0.0219055898,-0.0522471406,-0.0189603493,-0.0512510501,-0.0005330394,-0.0555729195,-
→˓0.0520991385,-0.0211805589],[-0.0404028483,0.020369729,0.0023353414,0.0119193504,-0.
→˓0124673871,-0.0115194013,0.0054978556,-0.028604554],[-0.0511647239,-0.0261075459,-0.
→˓0467265062,0.0189402122,0.0549614727,-0.0663635805,-0.0279217064,0.0042245188],[-0.
→˓0806629583,0.0107657518,0.0117750419,-0.0536228344,0.0310879052,-0.0637154654,-0.
→˓0681177229,0.0161142722],[-0.0744192228,-0.0230462849,0.0186079368,-0.0033951802,0.
→˓0216188282,-0.062285006,-0.062960647,0.0300793424],[-0.0315857232,-0.0647951886,-0.
→˓0148812886,-0.0678566247,0.023202572,-0.0827157721,-0.013793733,-0.0130123906],[-0.
→˓0297478233,-0.0688403174,0.0396807306,-0.0757085979,0.031263493,-0.0002234936,-0.
→˓0909571871,-0.0323583074],[-0.0240834001,-0.0398418121,-0.0064964825,-0.0367884561,
→˓0.0719116777,-0.0823321193,-0.0645215511,0.0338410847],[-0.0384184793,-0.0576236956,
→˓-0.019627776,-0.0506528094,-0.0163098071,-0.0409412533,-0.041446805,0.0172828659],[-
→˓0.005851123,-0.0429788493,-0.0252392255,-0.073766917,0.0097925663,-0.0794945806,-0.
→˓0849412307,0.0014261433],[-0.0512101054,0.0005189396,-0.0271312632,-0.0270303208,0.
→˓0178172924,-0.0880423188,-0.0889234915,-0.0421689749],[-0.0717964247,-0.0206637289,-
→˓0.0067394814,-0.0284654628,0.0247239321,-0.0477216393,-0.036414776,0.0200105682],[-
→˓0.0943818614,-0.0469460264,0.0279882532,-0.0619334579,0.0121557433,-0.0768882185,0.
→˓0002953591,0.0396316908],[-0.0686878562,-0.0194259193,0.0096589588,-0.0417566299,-0.
→˓0048376634,-0.0504943505,-0.0156595726,0.027880745],[-0.0523356088,-0.0725596026,0.
→˓0059417831,-0.0251557883,-0.0038264154,-0.0179003626,-0.0591997802,0.0274024624],[-
→˓0.0341782831,-0.0221797936,0.0042649712,-0.0477346219,0.0461222231,-0.0023178295,-0.
→˓03149179,0.0011711826],[-0.073523894,0.020247506,0.0248407796,0.0047891312,0.
→˓0758228377,-0.0405860767,-0.0173077062,0.0444364958],[0.0393536985,0.0223959032,0.
→˓0194161702,0.0163059514,0.0072390498,0.0256230235,0.0177581478,-0.0273305401],[-0.
→˓0929955989,0.0247371849,-0.0009080072,-0.0237545576,0.0517009124,-0.019001672,-0.
→˓0027636925,0.0225250944],[-0.0503246076,0.0514643453,-0.034101136,0.071626991,-0.
→˓0102834394,-0.0852171034,0.0230983458,-0.004897465],[-0.0262203328,-0.0664628223,-0.
→˓0034848654,-0.0033428837,0.0001543516,-0.0749761909,-0.024853928,0.0465056859],[-0.
→˓052637279,-0.0315136686,-0.0437926725,-0.0341987237,0.0392551571,-0.0518464595,-0.
→˓0266457852,0.0146500943],[-0.0341906585,-0.0460761786,-0.0180298146,-0.0055014049,0.
→˓0707753003,-0.0777451321,-0.0366662145,0.0145203276],[-0.0122610182,0.014549084,-0.
→˓0121618919,0.0285700168,0.0231714714,-0.0371087231,0.0220328253,-0.0466214307],[-0.
→˓0198020525,0.0109219337,0.0416364111,-0.0783106089,0.0728293508,-0.0356889144,-0.
→˓0880245343,0.0330911092],[-0.0854380801,-0.0669428557,-0.0214084946,-0.0081647681,0.
→˓0233404748,-0.0217991099,-0.0376962982,-0.042799335],[-0.0452309586,-0.0024355939,0.
→˓0175608397,-0.0052607814,0.0183441378,-0.0620779246,-0.0699491203,-0.0118549634],[-
→˓0.0959726647,0.0476075932,-0.0379351601,0.008159698,0.0384081416,-0.0612908602,-0.
→˓0189263411,-0.0454253554],[-0.0053411066,-0.0094355131,-0.0510591529,-0.0221638251,
→˓0.0046492857,-0.0514930561,-0.0705555007,-0.020327853],[0.0661738142,-0.0029260954,-
→˓0.0595169291,0.0101059973,-0.0022012119,0.049445834,0.0558575578,-0.012022947],[-0.
→˓0830700099,0.0212585274,-0.0389494337,-0.0166049339,0.0477221608,-0.0867467299,-0.
→˓0052994671,0.0331948586],[-0.0076975222,0.0475708768,-0.022361204,0.0159589462,0.
→˓0034970916,-0.0780191272,0.0727450103,0.0052784681],[-0.0611799173,-0.0223675836,-0.
→˓0501373671,0.0420941673,-0.0056689265,-0.0148042021,0.0729248822,0.0337781236],[-0.
→˓0021687131,0.0187189635,-0.0138026681,0.0335950628,0.0171724465,-0.0114344545,0.
→˓0064723557,0.014866543],[-0.0029786164,0.0592048354,-0.0431581549,0.0631211698,-0.
→˓0203074273,-0.0943428278,0.0607772991,0.0175965521],[-0.0953431055,0.0004848846,-0.
→˓055826772,0.0066280495,0.0397272743,-0.056723319,-0.0556911081,0.0250450671],[-0.
→˓0736271068,-0.0255948883,0.0372888483,0.0277335718,-0.0149522563,-0.0228647534,-0.
→˓0830083936,0.0032964509],[-0.062650837,-0.0202989262,-0.0077688964,-0.0318020023,0.
→˓0132382195,0.0001132841,-0.043601539,0.0263965204],[-0.0097646713,-0.0558951087,-0.
→˓039418485,-0.0255730916,0.013469019,-0.0136131318,-0.0810244158,0.0127038872],[-0.
→˓0612644814,-0.0250901058,0.0282239243,0.0373365022,0.0209282301,-0.0226692595,-0.
→˓0864989087,-0.0179349761],[-0.0924655274,0.0218485277,-0.0298216268,-0.0057617133,-
→˓0.0296175014,-0.0120711923,-0.0545658804,0.0150848003],[-0.0751573443,-0.0002987361,
→˓-0.0057580415,0.0093203867,-0.0140915299,-0.0325664468,-0.0779319704,0.0292233229],
→˓[-0.0079788342,0.0444301628,0.0362950899,0.0386882909,0.0018038042,-0.048700463,0.
→˓0057461374,-0.041268073],[-0.0221946761,-0.050303746,0.0298334453,-0.0346691869,0.
→˓0488329567,-0.0676441416,-0.0486205034,0.0179271474],[-0.0806570575,-0.0448458456,-
→˓0.0144681996,-0.0426183194,-0.0061101187,-0.0247607604,0.0180130191,0.0609768555],[-
→˓0.0479587466,-0.0541830994,0.0020282909,0.0168216806,0.0308838021,-0.0877256617,-0.
→˓013448243,0.0173823014],[-0.065826796,-0.0472236201,-0.0440701954,-0.002680534,0.
→˓0611480027,-0.0693870261,-0.0684818774,-0.0339303389],[-0.0024183108,-0.0320040435,
→˓0.0125231585,-0.0658573955,0.0589915328,-0.0091869226,-0.0402693488,-0.001413801],[-
→˓0.0122722089,-0.0643372461,-0.0261148885,-0.0108729294,0.0712984875,-0.0828262791,-
→˓0.0310833678,0.0446092822],[-0.0557892919,0.0059863473,-0.0507959016,-0.0419340506,
→˓0.0633320585,-0.0045545883,-0.0016710822,0.0357435755],[-0.0203432944,-0.0151491342,
→˓-0.0224984549,-0.0745795816,0.0090752272,-0.0742223784,0.0066466844,-0.0276446585],
→˓[-0.0677567497,0.0357993916,0.0044564921,-0.0539436862,-0.0110100135,0.0332751572,0.
→˓0323642008,0.0356529839],[-0.0750699639,-0.0045500868,-0.0511593483,-0.0463683642,0.
→˓0122727454,-0.0276447199,0.0391405001,0.0306293499],[-0.0934526324,-0.039043989,-0.
→˓0426228829,-0.0394503661,-0.0389413275,-0.0964915231,0.0093822209,0.0348296985],[-0.
→˓0690298229,-0.0508973859,0.0259087458,-0.0228281599,-0.0076745511,-0.0086752577,-0.
→˓0901542827,0.0304441247],[-0.0338399112,-0.0072802799,-0.0317518972,-0.0181066915,0.
→˓0328182429,-0.0979935005,0.0129396953,0.0413899347],[-0.0805611685,0.0028219493,0.
→˓0320406146,0.0552994162,-0.0416063294,-0.0664851591,0.0082092546,-0.0352456868]],[0.
→˓0499761477,0.0235879347,0.0078678448,0.0307559464,-0.0262398124,0.0492662415,0.
→˓0417507663,0.0019115364],[[-0.0497738235,0.082566157,0.0858044401,0.0807759464,-0.
→˓0281407479,-0.0240644943],[-0.0080805197,0.0533784255,0.0423657559,0.0844753161,-0.
→˓0132133355,0.0310063623],[0.0433566235,0.024253225,0.0388046354,0.1547681987,-0.
→˓0076785884,-0.0361264572],[-0.0191759467,0.0495774075,0.096243605,0.1220689639,0.
→˓0066543957,-0.0348133594],[-0.0043437853,0.000867462,0.0509670079,0.0299713202,-0.
→˓0031723627,-0.005397758],[-0.0177731514,0.0803218558,0.0660849884,0.13484326,-0.
→˓0441330299,0.0192133877],[-0.0007352605,0.0217755958,0.0690242201,0.0731370077,0.
→˓0624744706,-0.0324748941],[-0.0474479459,0.0553567745,-0.0198244397,-0.010604023,0.
→˓0421101451,0.0116976937]],[0.0,0.0703127161,0.0674306825,0.0584900826,0.0331571028,-
→˓0.0126846386],[[0.0055085532],[-0.1386123598],[-0.0565749854],[-0.0520785004],[-0.
→˓066370979],[0.0197858457]],[-0.0406405143]]"

(continues on next page)

4.4. Prepare a Dataset 35

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

},
"status": "finished",
"updated": "2018-02-15 19:30:36",
"user_id": 1,
"user_name": "root",
"version": 1

}

Here is the full HTTP request for preparing a dataset. For reference:

4.4.6 Inputs

ds_glob_path is where the CSV files are on disk.

4.4.7 Outputs

clean_file will be the training-ready CSV file create full_file is a full CSV file from the prepared datasets, this means
it will have things like dates, strings and other non-numeric values that make it not training-ready without additional
clean up steps. Please use the CSV file created in the clean_file value for training a Deep Neural Network.

will be an output the from the packet-redis.py script running in the pipeline container. The script writes csv
files

{
"title": "Prepare new Dataset from recordings",
"desc": "",
"ds_name": "new_recording",
"ds_glob_path": "/opt/antinex/datasets/*/*.csv",
"ds_dir": "/opt/antinex/datasets",
"full_file": "/tmp/fulldata_attack_scans.csv",
"clean_file": "/tmp/cleaned_attack_scans.csv",
"meta_suffix": "metadata.json",
"output_dir": "/tmp/",
"pipeline_files": {

"attack_files": []
},
"meta_data": {},
"post_proc": {

"drop_columns": [
"src_file",
"raw_id",
"raw_load",
"raw_hex_load",
"raw_hex_field_load",
"pad_load",
"eth_dst",
"eth_src",
"ip_dst",
"ip_src"

],
"predict_feature": "label_name"

},
"label_rules": {

"set_if_above": 85,

(continues on next page)

36 Chapter 4. API Examples

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

"labels": [
"not_attack",
"attack"

],
"label_values": [

0,
1

]
},
"version": 1

}

4.4.8 Prepare a Dataset using Curl

auth_header="Authorization: JWT ${token}"
curl -s -X POST \

--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header "${auth_header}" \
-d '{ "title": "Prepare new Dataset from recordings", "desc": "", "ds_name": "new_

→˓recording", "ds_glob_path": "/opt/antinex/datasets/*/*.csv", "ds_dir": "/opt/
→˓antinex/datasets", "full_file": "/tmp/fulldata_attack_scans.csv", "clean_file": "/
→˓tmp/cleaned_attack_scans.csv", "meta_suffix": "metadata.json", "output_dir": "/tmp/
→˓", "pipeline_files": { "attack_files": [] }, "meta_data": {}, "post_proc": { "drop_
→˓columns": ["src_file", "raw_id", "raw_load", "raw_hex_load", "raw_hex_field_load",
→˓"pad_load", "eth_dst", "eth_src", "ip_dst", "ip_src"], "predict_feature": "label_
→˓name" }, "label_rules": { "set_if_above": 85, "labels": ["not_attack", "attack"],
→˓"label_values": [0, 1] }, "version": 1 }' \

'http://0.0.0.0:8010/mlprepare/'

{"id":1,"user_id":1,"user_name":"root","status":"initial","control_state":"active",
→˓"title":"Prepare new Dataset from recordings","desc":"no desc","full_file":"/tmp/
→˓fulldata_attack_scans.csv","clean_file":"/tmp/cleaned_attack_scans.csv","meta_suffix
→˓":"metadata.json","output_dir":"/tmp/","ds_dir":"/opt/antinex/datasets","ds_glob_
→˓path":"/opt/antinex/datasets/*/*.csv","pipeline_files":{"attack_files":[]},"post_
→˓proc":{"drop_columns":["src_file","raw_id","raw_load","raw_hex_load","raw_hex_field_
→˓load","pad_load","eth_dst","eth_src","ip_dst","ip_src"],"predict_feature":"label_
→˓name"},"label_rules":{"set_if_above":85,"labels":["not_attack","attack"],"label_
→˓values":[0,1]},"tracking_id":"prep_fcd155e3-bd99-46a5-86d9-957fc7a95a8a","version
→˓":1,"created":"2018-03-30 16:06:49","updated":"2018-03-30 16:06:49","deleted":""}

4.4.9 Check the Newly Prepared Dataset Files Exist

ls -l /tmp/*.csv
-rw-r--r-- 1 jay jay 145580 Mar 30 09:07 /tmp/cleaned_attack_scans.csv
-rw-r--r-- 1 jay jay 26478291 Mar 30 09:07 /tmp/fulldata_attack_scans.csv

There is also metadata and dataset debugging information in the created JSON files:

ls -l /tmp/*.json
-rw-r--r-- 1 jay jay 1498 Mar 30 09:07 /tmp/cleaned_metadata.json
-rw-r--r-- 1 jay jay 2669 Mar 30 09:07 /tmp/fulldata_metadata.json

4.4. Prepare a Dataset 37

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

4.4.10 Get Prepared Dataset Record from the Database using Curl

auth_header="Authorization: JWT ${token}"
curl -s -X GET \

--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header "${auth_header}" \
'http://0.0.0.0:8010/mlprepare/1/'

{"id":1,"user_id":1,"user_name":"root","status":"finished","control_state":"finished",
→˓"title":"Prepare new Dataset from recordings","desc":"no desc","full_file":"/tmp/
→˓fulldata_attack_scans.csv","clean_file":"/tmp/cleaned_attack_scans.csv","meta_suffix
→˓":"metadata.json","output_dir":"/tmp/","ds_dir":"/opt/antinex/datasets","ds_glob_
→˓path":"/opt/antinex/datasets/*/*.csv","pipeline_files":["/opt/antinex/datasets/
→˓react-redux/netdata-2018-01-29-13-36-35.csv","/opt/antinex/datasets/spring/netdata-
→˓2018-01-29-15-00-12.csv","/opt/antinex/datasets/vue/netdata-2018-01-29-14-12-44.csv
→˓","/opt/antinex/datasets/django/netdata-2018-01-28-23-12-13.csv","/opt/antinex/
→˓datasets/django/netdata-2018-01-28-23-06-05.csv","/opt/antinex/datasets/flask-
→˓restplus/netdata-2018-01-29-11-30-02.csv"],"post_proc":{"drop_columns":["src_file",
→˓"raw_id","raw_load","raw_hex_load","raw_hex_field_load","pad_load","eth_dst","eth_
→˓src","ip_dst","ip_src"],"ignore_features":["label_name","src_file","raw_id","raw_
→˓load","raw_hex_field_load","pad_load","eth_dst","eth_src","ip_dst","ip_src"],
→˓"predict_feature":"label_name","feature_to_predict":"label_name","features_to_
→˓process":["arp_id","dns_id","eth_id","eth_type","icmp_id","idx","ip_id","ip_ihl",
→˓"ip_len","ip_tos","ip_version","ipvsix_id","label_value","pad_id","tcp_dport","tcp_
→˓fields_options.MSS","tcp_fields_options.NOP","tcp_fields_options.SAckOK","tcp_
→˓fields_options.Timestamp","tcp_fields_options.WScale","tcp_id","tcp_seq","tcp_sport
→˓","udp_id","label_name"]},"label_rules":{"labels":["not_attack","attack"],"label_
→˓values":[0,1],"set_if_above":85},"tracking_id":"prep_fcd155e3-bd99-46a5-86d9-
→˓957fc7a95a8a","version":1,"created":"2018-03-30 16:06:49","updated":"2018-03-30
→˓16:07:07","deleted":""}

4.5 Train a Deep Neural Network with a Dataset

If you want to use the AntiNex Datasets repository you will need to clone the repository locally.

git clone https://github.com/jay-johnson/antinex-datasets /opt/antinex/antinex-
→˓datasets

Here is the full HTTP request for training a new Deep Neural Network from a dataset on disk:

{
"label": "Full-Django-AntiNex-Simple-Scaler-DNN",
"dataset": "/opt/antinex/antinex-datasets/v1/webapps/django/training-ready/v1_

→˓django_cleaned.csv",
"ml_type": "classification",
"publish_to_core": true,
"predict_feature": "label_value",
"features_to_process": [

"idx",
"arp_hwlen",
"arp_hwtype",
"arp_id",
"arp_op",
"arp_plen",

(continues on next page)

38 Chapter 4. API Examples

https://github.com/jay-johnson/antinex-datasets

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

"arp_ptype",
"dns_default_aa",
"dns_default_ad",
"dns_default_an",
"dns_default_ancount",
"dns_default_ar",
"dns_default_arcount",
"dns_default_cd",
"dns_default_id",
"dns_default_length",
"dns_default_ns",
"dns_default_nscount",
"dns_default_opcode",
"dns_default_qd",
"dns_default_qdcount",
"dns_default_qr",
"dns_default_ra",
"dns_default_rcode",
"dns_default_rd",
"dns_default_tc",
"dns_default_z",
"dns_id",
"eth_id",
"eth_type",
"icmp_addr_mask",
"icmp_code",
"icmp_gw",
"icmp_id",
"icmp_ptr",
"icmp_seq",
"icmp_ts_ori",
"icmp_ts_rx",
"icmp_ts_tx",
"icmp_type",
"icmp_unused",
"ip_id",
"ip_ihl",
"ip_len",
"ip_tos",
"ip_version",
"ipv6_fl",
"ipv6_hlim",
"ipv6_nh",
"ipv6_plen",
"ipv6_tc",
"ipv6_version",
"ipvsix_id",
"pad_id",
"tcp_dport",
"tcp_fields_options.MSS",
"tcp_fields_options.NOP",
"tcp_fields_options.SAckOK",
"tcp_fields_options.Timestamp",
"tcp_fields_options.WScale",
"tcp_id",
"tcp_seq",
"tcp_sport",

(continues on next page)

4.5. Train a Deep Neural Network with a Dataset 39

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

"udp_dport",
"udp_id",
"udp_len",
"udp_sport"

],
"ignore_features": [
],
"sort_values": [
],
"seed": 42,
"test_size": 0.2,
"batch_size": 32,
"epochs": 15,
"num_splits": 2,
"loss": "binary_crossentropy",
"optimizer": "adam",
"metrics": [

"accuracy"
],
"histories": [

"val_loss",
"val_acc",
"loss",
"acc"

],
"model_desc": {

"layers": [
{

"num_neurons": 200,
"init": "uniform",
"activation": "relu"

},
{

"num_neurons": 1,
"init": "uniform",
"activation": "sigmoid"

}
]

},
"label_rules": {

"labels": [
"not_attack",
"not_attack",
"attack"

],
"label_values": [

-1,
0,
1

]
},
"version": 1

}

40 Chapter 4. API Examples

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

4.5.1 Train a Deep Neural Network with Curl

This example created Deep Neural Network by Job ID 3 with Results ID 3.

auth_header="Authorization: JWT ${token}"
curl -s -X POST \

--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header "${auth_header}" \
-d '{ "label": "Full-Django-AntiNex-Simple-Scaler-DNN", "dataset": "/opt/antinex/

→˓antinex-datasets/v1/webapps/django/training-ready/v1_django_cleaned.csv", "ml_type
→˓": "classification", "publish_to_core": true, "predict_feature": "label_value",
→˓"features_to_process": ["idx", "arp_hwlen", "arp_hwtype", "arp_id", "arp_op", "arp_
→˓plen", "arp_ptype", "dns_default_aa", "dns_default_ad", "dns_default_an", "dns_
→˓default_ancount", "dns_default_ar", "dns_default_arcount", "dns_default_cd", "dns_
→˓default_id", "dns_default_length", "dns_default_ns", "dns_default_nscount", "dns_
→˓default_opcode", "dns_default_qd", "dns_default_qdcount", "dns_default_qr", "dns_
→˓default_ra", "dns_default_rcode", "dns_default_rd", "dns_default_tc", "dns_default_z
→˓", "dns_id", "eth_id", "eth_type", "icmp_addr_mask", "icmp_code", "icmp_gw", "icmp_
→˓id", "icmp_ptr", "icmp_seq", "icmp_ts_ori", "icmp_ts_rx", "icmp_ts_tx", "icmp_type",
→˓ "icmp_unused", "ip_id", "ip_ihl", "ip_len", "ip_tos", "ip_version", "ipv6_fl",
→˓"ipv6_hlim", "ipv6_nh", "ipv6_plen", "ipv6_tc", "ipv6_version", "ipvsix_id", "pad_id
→˓", "tcp_dport", "tcp_fields_options.MSS", "tcp_fields_options.NOP", "tcp_fields_
→˓options.SAckOK", "tcp_fields_options.Timestamp", "tcp_fields_options.WScale", "tcp_
→˓id", "tcp_seq", "tcp_sport", "udp_dport", "udp_id", "udp_len", "udp_sport"],
→˓"ignore_features": [], "sort_values": [], "seed": 42, "test_size": 0.2, "batch_
→˓size": 32, "epochs": 15, "num_splits": 2, "loss": "binary_crossentropy", "optimizer
→˓": "adam", "metrics": ["accuracy"], "histories": ["val_loss", "val_acc", "loss",
→˓"acc"], "model_desc": { "layers": [{ "num_neurons": 200, "init": "uniform",
→˓"activation": "relu" }, { "num_neurons": 1, "init": "uniform", "activation":
→˓"sigmoid" }] }, "label_rules": { "labels": ["not_attack", "not_attack", "attack"
→˓], "label_values": [-1, 0, 1] }, "version": 1 }' \

'http://0.0.0.0:8010/ml/'

{"job":{"id":3,"user_id":1,"user_name":"root","title":"Full-Django-AntiNex-Simple-
→˓Scaler-DNN","desc":null,"ds_name":"Full-Django-AntiNex-Simple-Scaler-DNN","algo_name
→˓":"Full-Django-AntiNex-Simple-Scaler-DNN","ml_type":"classification","status":
→˓"initial","control_state":"active","predict_feature":"label_value","predict_manifest
→˓":{"job_id":3,"result_id":3,"ml_type":"classification","test_size":0.2,"epochs":15,
→˓"batch_size":32,"num_splits":2,"loss":"binary_crossentropy","metrics":["accuracy"],
→˓"optimizer":"adam","histories":["val_loss","val_acc","loss","acc"],"seed":42,
→˓"training_data":{},"csv_file":null,"meta_file":null,"use_model_name":"Full-Django-
→˓AntiNex-Simple-Scaler-DNN","dataset":"/opt/antinex/antinex-datasets/v1/webapps/
→˓django/training-ready/v1_django_cleaned.csv","predict_rows":null,"apply_scaler
→˓":true,"predict_feature":"label_value","features_to_process":["idx","arp_hwlen",
→˓"arp_hwtype","arp_id","arp_op","arp_plen","arp_ptype","dns_default_aa","dns_default_
→˓ad","dns_default_an","dns_default_ancount","dns_default_ar","dns_default_arcount",
→˓"dns_default_cd","dns_default_id","dns_default_length","dns_default_ns","dns_
→˓default_nscount","dns_default_opcode","dns_default_qd","dns_default_qdcount","dns_
→˓default_qr","dns_default_ra","dns_default_rcode","dns_default_rd","dns_default_tc",
→˓"dns_default_z","dns_id","eth_id","eth_type","icmp_addr_mask","icmp_code","icmp_gw",
→˓"icmp_id","icmp_ptr","icmp_seq","icmp_ts_ori","icmp_ts_rx","icmp_ts_tx","icmp_type",
→˓"icmp_unused","ip_id","ip_ihl","ip_len","ip_tos","ip_version","ipv6_fl","ipv6_hlim",
→˓"ipv6_nh","ipv6_plen","ipv6_tc","ipv6_version","ipvsix_id","pad_id","tcp_dport",
→˓"tcp_fields_options.MSS","tcp_fields_options.NOP","tcp_fields_options.SAckOK","tcp_
→˓fields_options.Timestamp","tcp_fields_options.WScale","tcp_id","tcp_seq","tcp_sport
→˓","udp_dport","udp_id","udp_len","udp_sport"],"ignore_features":[],"sort_values":[],
→˓"model_desc":{"layers":[{"num_neurons":200,"init":"uniform","activation":"relu"},{
→˓"num_neurons":1,"init":"uniform","activation":"sigmoid"}]},"label_rules":{"labels":[
→˓"not_attack","not_attack","attack"],"label_values":[-1,0,1]},"post_proc_rules":null,
→˓"model_weights_file":"/tmp/ml_weights_job_3_result_3.h5","verbose":1,"version":1,
→˓"publish_to_core":true,"worker_result_node":{"source":"drf","auth_url":"redis://
→˓localhost:6379/9","ssl_options":{},"exchange":"drf_network_pipeline.pipeline.tasks.
→˓task_ml_process_results","exchange_type":"topic","routing_key":"drf_network_
→˓pipeline.pipeline.tasks.task_ml_process_results","queue":"drf_network_pipeline.
→˓pipeline.tasks.task_ml_process_results","delivery_mode":2,"task_name":"drf_network_
→˓pipeline.pipeline.tasks.task_ml_process_results","manifest":{"job_id":3,"result_id
→˓":3,"job_type":"train-and-predict"}}},"training_data":{},"pre_proc":{},"post_proc":
→˓{},"meta_data":{},"tracking_id":"ml_4529bda5-2003-45ce-b08b-bfc48d6a008b","version
→˓":1,"created":"2018-03-30 16:25:49","updated":"2018-03-30 16:25:49","deleted":""},
→˓"results":{"id":3,"user_id":1,"user_name":"root","job_id":3,"status":"initial",
→˓"test_size":0.2,"csv_file":null,"meta_file":null,"version":1,"acc_data":{"accuracy
→˓":-1.0},"error_data":null,"model_json":null,"model_weights":null,"acc_image_file
→˓":null,"predictions_json":null,"created":"2018-03-30 16:25:49","updated":"2018-03-
→˓30 16:25:49","deleted":""}}

(continues on next page)

4.5. Train a Deep Neural Network with a Dataset 41

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

4.5.2 Get a Deep Neural Network Job Record with Curl

Get the example Deep Neural Network Job by ID 3.

auth_header="Authorization: JWT ${token}"
curl -s -X GET \

--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header "${auth_header}" \
'http://0.0.0.0:8010/ml/3/'

{"id":3,"user_id":1,"user_name":"root","title":"Full-Django-AntiNex-Simple-Scaler-DNN
→˓","desc":null,"ds_name":"Full-Django-AntiNex-Simple-Scaler-DNN","algo_name":"Full-
→˓Django-AntiNex-Simple-Scaler-DNN","ml_type":"classification","status":"finished",
→˓"control_state":"finished","predict_feature":"label_value","predict_manifest":{"loss
→˓":"binary_crossentropy","seed":42,"epochs":15,"job_id":3,"dataset":"/opt/antinex/
→˓antinex-datasets/v1/webapps/django/training-ready/v1_django_cleaned.csv","metrics":[
→˓"accuracy"],"ml_type":"classification","verbose":1,"version":1,"csv_file":null,
→˓"histories":["val_loss","val_acc","loss","acc"],"meta_file":null,"optimizer":"adam",
→˓"result_id":3,"test_size":0.2,"batch_size":32,"model_desc":{"layers":[{"init":
→˓"uniform","activation":"relu","num_neurons":200},{"init":"uniform","activation":
→˓"sigmoid","num_neurons":1}]},"num_splits":2,"label_rules":{"labels":["not_attack",
→˓"not_attack","attack"],"label_values":[-1,0,1]},"sort_values":[],"apply_scaler
→˓":true,"predict_rows":null,"training_data":{},"use_model_name":"Full-Django-AntiNex-
→˓Simple-Scaler-DNN","ignore_features":[],"post_proc_rules":null,"predict_feature":
→˓"label_value","publish_to_core":true,"model_weights_file":"/tmp/ml_weights_job_3_
→˓result_3.h5","worker_result_node":{"queue":"drf_network_pipeline.pipeline.tasks.
→˓task_ml_process_results","source":"drf","auth_url":"redis://localhost:6379/9",
→˓"exchange":"drf_network_pipeline.pipeline.tasks.task_ml_process_results","manifest":
→˓{"job_id":3,"job_type":"train-and-predict","result_id":3},"task_name":"drf_network_
→˓pipeline.pipeline.tasks.task_ml_process_results","routing_key":"drf_network_
→˓pipeline.pipeline.tasks.task_ml_process_results","ssl_options":{},"delivery_mode":2,
→˓"exchange_type":"topic"},"features_to_process":["idx","arp_hwlen","arp_hwtype","arp_
→˓id","arp_op","arp_plen","arp_ptype","dns_default_aa","dns_default_ad","dns_default_
→˓an","dns_default_ancount","dns_default_ar","dns_default_arcount","dns_default_cd",
→˓"dns_default_id","dns_default_length","dns_default_ns","dns_default_nscount","dns_
→˓default_opcode","dns_default_qd","dns_default_qdcount","dns_default_qr","dns_
→˓default_ra","dns_default_rcode","dns_default_rd","dns_default_tc","dns_default_z",
→˓"dns_id","eth_id","eth_type","icmp_addr_mask","icmp_code","icmp_gw","icmp_id","icmp_
→˓ptr","icmp_seq","icmp_ts_ori","icmp_ts_rx","icmp_ts_tx","icmp_type","icmp_unused",
→˓"ip_id","ip_ihl","ip_len","ip_tos","ip_version","ipv6_fl","ipv6_hlim","ipv6_nh",
→˓"ipv6_plen","ipv6_tc","ipv6_version","ipvsix_id","pad_id","tcp_dport","tcp_fields_
→˓options.MSS","tcp_fields_options.NOP","tcp_fields_options.SAckOK","tcp_fields_
→˓options.Timestamp","tcp_fields_options.WScale","tcp_id","tcp_seq","tcp_sport","udp_
→˓dport","udp_id","udp_len","udp_sport"]},"training_data":{},"pre_proc":{},"post_proc
→˓":{},"meta_data":{},"tracking_id":"ml_4529bda5-2003-45ce-b08b-bfc48d6a008b","version
→˓":1,"created":"2018-03-30 16:25:49","updated":"2018-03-30 16:26:49","deleted":""}

4.5.3 Get a Deep Neural Network Results with Curl

Get the example Deep Neural Network Training, Accuracy and Prediction Results by ID 3.

42 Chapter 4. API Examples

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

Note: This will return all 30200 records so it can take a second

auth_header="Authorization: JWT ${token}"
curl -s -X GET \

--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header "${auth_header}" \
'http://0.0.0.0:8010/mlresults/3/'

...

{"id":3,"user_id":1,"user_name":"root","job_id":3,"status":"finished","test_size":0.2,
→˓"csv_file":null,"meta_file":null,"version":1,"acc_data":{"accuracy":99.
→˓82615894039735},"error_data":null,"model_json":"{\"class_name\": \"Sequential\", \
→˓"config\": [{\"class_name\": \"Dense\", \"config\": {\"name\": \"dense_1\", \
→˓"trainable\": true, \"batch_input_shape\": [null, 67], \"dtype\": \"float32\", \
→˓"units\": 200, \"activation\": \"relu\", \"use_bias\": true, \"kernel_initializer\
→˓": {\"class_name\": \"RandomUniform\", \"config\": {\"minval\": -0.05, \"maxval\":
→˓0.05, \"seed\": null}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\
→˓": {}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_
→˓regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}}, {\
→˓"class_name\": \"Dense\", \"config\": {\"name\": \"dense_2\", \"trainable\": true, \
→˓"units\": 1, \"activation\": \"sigmoid\", \"use_bias\": true, \"kernel_initializer\
→˓": {\"class_name\": \"RandomUniform\", \"config\": {\"minval\": -0.05, \"maxval\":
→˓0.05, \"seed\": null}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\
→˓": {}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_
→˓regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}}], \
→˓"keras_version\": \"2.1.5\", \"backend\": \"tensorflow\"}","model_weights":{},"acc_
→˓image_file":null,"predictions_json":{"predictions":[

... lots of prediction dictionaries

4.5.4 Make New Predictions with a Pre-trained Deep Neural Network with Curl

This example uses the pre-trained Deep Neural Network to make new predictions with a Job ID 4 with Results ID 4.

auth_header="Authorization: JWT ${token}"
curl -s -X POST \

--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header "${auth_header}" \
-d '{ "label": "Full-Django-AntiNex-Simple-Scaler-DNN", "dataset": "/opt/antinex/

→˓antinex-datasets/v1/webapps/django/training-ready/v1_django_cleaned.csv", "ml_type
→˓": "classification", "publish_to_core": true, "predict_feature": "label_value",
→˓"features_to_process": ["idx", "arp_hwlen", "arp_hwtype", "arp_id", "arp_op", "arp_
→˓plen", "arp_ptype", "dns_default_aa", "dns_default_ad", "dns_default_an", "dns_
→˓default_ancount", "dns_default_ar", "dns_default_arcount", "dns_default_cd", "dns_
→˓default_id", "dns_default_length", "dns_default_ns", "dns_default_nscount", "dns_
→˓default_opcode", "dns_default_qd", "dns_default_qdcount", "dns_default_qr", "dns_
→˓default_ra", "dns_default_rcode", "dns_default_rd", "dns_default_tc", "dns_default_z
→˓", "dns_id", "eth_id", "eth_type", "icmp_addr_mask", "icmp_code", "icmp_gw", "icmp_
→˓id", "icmp_ptr", "icmp_seq", "icmp_ts_ori", "icmp_ts_rx", "icmp_ts_tx", "icmp_type",
→˓ "icmp_unused", "ip_id", "ip_ihl", "ip_len", "ip_tos", "ip_version", "ipv6_fl",
→˓"ipv6_hlim", "ipv6_nh", "ipv6_plen", "ipv6_tc", "ipv6_version", "ipvsix_id", "pad_id
→˓", "tcp_dport", "tcp_fields_options.MSS", "tcp_fields_options.NOP", "tcp_fields_
→˓options.SAckOK", "tcp_fields_options.Timestamp", "tcp_fields_options.WScale", "tcp_
→˓id", "tcp_seq", "tcp_sport", "udp_dport", "udp_id", "udp_len", "udp_sport"],
→˓"ignore_features": [], "sort_values": [], "seed": 42, "test_size": 0.2, "batch_
→˓size": 32, "epochs": 15, "num_splits": 2, "loss": "binary_crossentropy", "optimizer
→˓": "adam", "metrics": ["accuracy"], "histories": ["val_loss", "val_acc", "loss",
→˓"acc"], "model_desc": { "layers": [{ "num_neurons": 200, "init": "uniform",
→˓"activation": "relu" }, { "num_neurons": 1, "init": "uniform", "activation":
→˓"sigmoid" }] }, "label_rules": { "labels": ["not_attack", "not_attack", "attack"
→˓], "label_values": [-1, 0, 1] }, "version": 1 }' \

(continues on next page)

4.5. Train a Deep Neural Network with a Dataset 43

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

'http://0.0.0.0:8010/ml/'

{"job":{"id":4,"user_id":1,"user_name":"root","title":"Full-Django-AntiNex-Simple-
→˓Scaler-DNN","desc":null,"ds_name":"Full-Django-AntiNex-Simple-Scaler-DNN","algo_name
→˓":"Full-Django-AntiNex-Simple-Scaler-DNN","ml_type":"classification","status":
→˓"initial","control_state":"active","predict_feature":"label_value","predict_manifest
→˓":{"job_id":4,"result_id":4,"ml_type":"classification","test_size":0.2,"epochs":15,
→˓"batch_size":32,"num_splits":2,"loss":"binary_crossentropy","metrics":["accuracy"],
→˓"optimizer":"adam","histories":["val_loss","val_acc","loss","acc"],"seed":42,
→˓"training_data":{},"csv_file":null,"meta_file":null,"use_model_name":"Full-Django-
→˓AntiNex-Simple-Scaler-DNN","dataset":"/opt/antinex/antinex-datasets/v1/webapps/
→˓django/training-ready/v1_django_cleaned.csv","predict_rows":null,"apply_scaler
→˓":true,"predict_feature":"label_value","features_to_process":["idx","arp_hwlen",
→˓"arp_hwtype","arp_id","arp_op","arp_plen","arp_ptype","dns_default_aa","dns_default_
→˓ad","dns_default_an","dns_default_ancount","dns_default_ar","dns_default_arcount",
→˓"dns_default_cd","dns_default_id","dns_default_length","dns_default_ns","dns_
→˓default_nscount","dns_default_opcode","dns_default_qd","dns_default_qdcount","dns_
→˓default_qr","dns_default_ra","dns_default_rcode","dns_default_rd","dns_default_tc",
→˓"dns_default_z","dns_id","eth_id","eth_type","icmp_addr_mask","icmp_code","icmp_gw",
→˓"icmp_id","icmp_ptr","icmp_seq","icmp_ts_ori","icmp_ts_rx","icmp_ts_tx","icmp_type",
→˓"icmp_unused","ip_id","ip_ihl","ip_len","ip_tos","ip_version","ipv6_fl","ipv6_hlim",
→˓"ipv6_nh","ipv6_plen","ipv6_tc","ipv6_version","ipvsix_id","pad_id","tcp_dport",
→˓"tcp_fields_options.MSS","tcp_fields_options.NOP","tcp_fields_options.SAckOK","tcp_
→˓fields_options.Timestamp","tcp_fields_options.WScale","tcp_id","tcp_seq","tcp_sport
→˓","udp_dport","udp_id","udp_len","udp_sport"],"ignore_features":[],"sort_values":[],
→˓"model_desc":{"layers":[{"num_neurons":200,"init":"uniform","activation":"relu"},{
→˓"num_neurons":1,"init":"uniform","activation":"sigmoid"}]},"label_rules":{"labels":[
→˓"not_attack","not_attack","attack"],"label_values":[-1,0,1]},"post_proc_rules":null,
→˓"model_weights_file":"/tmp/ml_weights_job_4_result_4.h5","verbose":1,"version":1,
→˓"publish_to_core":true,"worker_result_node":{"source":"drf","auth_url":"redis://
→˓localhost:6379/9","ssl_options":{},"exchange":"drf_network_pipeline.pipeline.tasks.
→˓task_ml_process_results","exchange_type":"topic","routing_key":"drf_network_
→˓pipeline.pipeline.tasks.task_ml_process_results","queue":"drf_network_pipeline.
→˓pipeline.tasks.task_ml_process_results","delivery_mode":2,"task_name":"drf_network_
→˓pipeline.pipeline.tasks.task_ml_process_results","manifest":{"job_id":4,"result_id
→˓":4,"job_type":"train-and-predict"}}},"training_data":{},"pre_proc":{},"post_proc":
→˓{},"meta_data":{},"tracking_id":"ml_cb723821-e840-45ad-ac3a-94a86a0cfc88","version
→˓":1,"created":"2018-03-30 16:32:56","updated":"2018-03-30 16:32:56","deleted":""},
→˓"results":{"id":4,"user_id":1,"user_name":"root","job_id":4,"status":"initial",
→˓"test_size":0.2,"csv_file":null,"meta_file":null,"version":1,"acc_data":{"accuracy
→˓":-1.0},"error_data":null,"model_json":null,"model_weights":null,"acc_image_file
→˓":null,"predictions_json":null,"created":"2018-03-30 16:32:56","updated":"2018-03-
→˓30 16:32:56","deleted":""}}

4.5.5 Get New Predictions Results from the Pre-trained Deep Neural Network with
Curl

Get the example Deep Neural Network Training, Accuracy and Prediction Results by ID 4.

Note: This will return all 30200 records so it can take a second

auth_header="Authorization: JWT ${token}"
curl -s -X GET \

(continues on next page)

44 Chapter 4. API Examples

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header "${auth_header}" \
'http://0.0.0.0:8010/mlresults/4/'

...

{"id":4,"user_id":1,"user_name":"root","job_id":4,"status":"finished","test_size":0.2,
→˓"csv_file":null,"meta_file":null,"version":1,"acc_data":{"accuracy":99.
→˓82615894039735},"error_data":null,"model_json":"{\"class_name\": \"Sequential\", \
→˓"config\": [{\"class_name\": \"Dense\", \"config\": {\"name\": \"dense_1\", \
→˓"trainable\": true, \"batch_input_shape\": [null, 67], \"dtype\": \"float32\", \
→˓"units\": 200, \"activation\": \"relu\", \"use_bias\": true, \"kernel_initializer\
→˓": {\"class_name\": \"RandomUniform\", \"config\": {\"minval\": -0.05, \"maxval\":
→˓0.05, \"seed\": null}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\
→˓": {}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_
→˓regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}}, {\
→˓"class_name\": \"Dense\", \"config\": {\"name\": \"dense_2\", \"trainable\": true, \
→˓"units\": 1, \"activation\": \"sigmoid\", \"use_bias\": true, \"kernel_initializer\
→˓": {\"class_name\": \"RandomUniform\", \"config\": {\"minval\": -0.05, \"maxval\":
→˓0.05, \"seed\": null}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\
→˓": {}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_
→˓regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}}], \
→˓"keras_version\": \"2.1.5\", \"backend\": \"tensorflow\"}","model_weights":{},"acc_
→˓image_file":null,"predictions_json":{"predictions":[

... lots of prediction dictionaries

4.5.6 Using Python Scripts

There are many example scripts through the repositories that use python to interface with each of the AntiNex compo-
nents.

Here are some links to additional, more up-to-date examples:

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#automation

https://github.com/jay-johnson/antinex-core#publish-a-predict-request

https://github.com/jay-johnson/antinex-client#run-predictions

4.6 Debugging

4.6.1 Tail the API logs

From the base directory of the Django REST API repository you can watch what the server is doing inside the container
with:

./tail-api.sh

4.6. Debugging 45

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#automation
https://github.com/jay-johnson/antinex-core#publish-a-predict-request
https://github.com/jay-johnson/antinex-client#run-predictions
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

4.6.2 Tail the Celery Worker logs

From the base directory of the Django REST API repository you can watch what the REST API Celery Worker is
doing inside the container with:

./tail-worker.sh

4.6.3 Tail the AntiNex Core Worker logs

From the base directory of the Django REST API repository you can watch what the AntiNex Core Worker (which is
also a Celery Worker) is doing inside the container with:

./tail-core.sh

4.6.4 Signature has expired

Log back in to get a new token if you see this message:

{"detail":"Signature has expired."}

token=$(curl -s -X POST \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
-d '{ "username": "root", "password": "123321" }' \
'http://0.0.0.0:8010/api-token-auth/' \
| sed -e 's/"/ /g' | awk '{print $4}')

4.7 AntiNex Stack Status

The AntiNex REST API is part of the AntiNex stack:

Component Build Docs Link Docs Build
REST API Docs
Core Worker Docs
Network Pipeline Docs
AI Utils Docs
Client Docs

46 Chapter 4. API Examples

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt
https://travis-ci.org/jay-johnson/train-ai-with-django-swagger-jwt.svg
http://antinex.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex/badge/?version=latest
https://github.com/jay-johnson/antinex-core
https://travis-ci.org/jay-johnson/antinex-core.svg
http://antinex-core-worker.readthedocs.io/en/latest/
http://antinex-core-worker.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/network-pipeline
https://travis-ci.org/jay-johnson/network-pipeline.svg
http://antinex-network-pipeline.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex-network-pipeline/badge/?version=latest
https://github.com/jay-johnson/antinex-utils
https://travis-ci.org/jay-johnson/antinex-utils.svg
http://antinex-ai-utilities.readthedocs.io/en/latest/
http://antinex-ai-utilities.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/antinex-client
https://travis-ci.org/jay-johnson/antinex-client.svg
http://antinex-client.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex-client/badge/?version=latest

CHAPTER 5

More Included App URLs

5.1 Jupyter Slides on How the Analysis Works

Note: The left and right arrow keys navigate the slides in the browser.

http://localhost:8889/Slides-AntiNex-Protecting-Django.slides.html#/

http://localhost:8890/Slides-AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.slides.html#/

5.2 Django REST API with Swagger

Credentials: root and 123321

http://localhost:8010/swagger/

• Build and Train a DNN

• Get Training Predictions and Accuracy Results

• Get Training Job Record

• Prepare a New Dataset

5.3 Django-hosted Sphinx Docs

http://localhost:8010/docs/

47

http://localhost:8889/Slides-AntiNex-Protecting-Django.slides.html#/
http://localhost:8890/Slides-AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.slides.html#/
http://localhost:8010/swagger/
http://localhost:8010/swagger/#!/ml/ml_create
http://localhost:8010/swagger/#!/mlresults/mlresults_read
http://localhost:8010/swagger/#!/ml/ml_read
http://localhost:8010/swagger/#!/mlprepare/mlprepare_create
http://localhost:8010/docs/

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

5.4 Jupyter

Login with: admin

http://localhost:8888/

5.5 Browse the Postgres DB with pgAdmin4

Credentials: admin@email.com and postgres

http://localhost:83

48 Chapter 5. More Included App URLs

http://localhost:8888/
http://localhost:83

CHAPTER 6

So why does this matter?

• There is no free software we can use today that can share and continually learn how to better defend software
applications and our networks against attacks

• AI for network security is a vendor lock-in play, and this approach is already beating the best scores I see online

• Without open datasets and shared best-of-AI-model definitions, our networks will continue to be susceptible to
attacks that are easy to defend (antivirus has been doing this same approach for years but it is not good enough)

• Build your own 99.7% accurate dnn within minutes of running the dockerized stack

• Building new training datasets with your own attack and non-attack data takes a matter of minutes

• Replay and prediction history is stored on the user’s account within the included postgres database

• The same core can run on any system that can run python 3 (it can be backported to python 2 for IoT devices as
all the internal components like Keras and Tensorflow still run on python 2)

49

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

50 Chapter 6. So why does this matter?

CHAPTER 7

How does it work?

AntiNex is three custom python components that run distributed and are independently scalable. Like many other
distributed systems, it utilizes a publisher-subscriber implementation to run a data pipeline with the final step being
everything gets recorded in the postgres database (including all training, predictions and model definitions).

Here is the workflow for training of a Deep Neural Network with AntiNex. As a user you just have to start the docker
stack, and submit a request over HTTP:

51

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/0d280216e3697f0d2cf7456095e37df64be73040/compose.yml#L5-L15

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

52 Chapter 7. How does it work?

CHAPTER 8

Components

8.1 Network Pipeline

Traffic Capture Data Pipeline

Here is how the capture agents would be set up for capturing network traffic across many hosts. These agents create
a network traffic feed that is aggregated in a common, shared message broker (redis by default).

53

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

Warning: Capture agents are going to sniff your network so be extremely careful where you deploy them.
Capture agents must be run as root to capture traffic from all OSI layers. Also, capture agents should not run
inside docker containers as docker is very noisy on the network (which I did not know when I started building
this). Lastly, none of the docker compose files should be monitoring your network traffic without your explicit
knowledge. Please contact me if you find one that does, and I will immediately remove it.

Note: The included pipeline container is only running the subscriber that saves CSVs and POSTs predictions to the
REST API which make it easier to get started. Run this to verify what is running in the container:

docker exec -it pipeline ps auwwx
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
runner 1 0.2 0.0 4340 812 ? Ss 07:32 0:00 /bin/sh -c cd /opt/
→˓antinex/pipeline && . ~/.venvs/venvdrfpipeline/bin/activate && /opt/antinex/
→˓pipeline/network_pipeline/scripts/packets_redis.py
runner 10 12.8 0.5 409060 66196 ? Sl 07:32 0:00 python /opt/antinex/
→˓pipeline/network_pipeline/scripts/packets_redis.py
runner 17 0.0 0.0 19192 2408 pts/0 Rs+ 07:32 0:00 ps auwwx

This subscriber script is on GitHub:

https://github.com/jay-johnson/network-pipeline/blob/master/network_pipeline/scripts/packets_redis.py

Please refer to the repository for the latest code and documentation: https://github.com/jay-johnson/network-pipeline

This repository allows users to capture network traffic in real-time from many machines running any of the capture
agents. These agents become a network traffic feed which is aggregated in a common hub (redis).

These pre-configured capture agents perform the following steps in order:

1. Record network traffic based off easy-to-write network filters

2. Flatten captured traffic packets into dictionaries (using pandas json-normalize)

(a) Assemble a csv file after capturing a configurable number of packets (100 by default)

(b) Save the csv data to disk

3. Post the csv data as JSON to the REST API using the antinex-client

8.1.1 AntiNex - Network Data Analysis Pipeline

This is a distributed python 3 framework for automating network traffic capture and converting it into a csv file. Once
you have a csv file you can build, train and tune machine learning models to defend your own infrastructure by actively
monitoring the network layer.

54 Chapter 8. Components

https://github.com/jay-johnson/network-pipeline/blob/master/network_pipeline/scripts/packets_redis.py
https://github.com/jay-johnson/network-pipeline
https://github.com/jay-johnson/network-pipeline/tree/1db3d340a1c6cef39d68c9e01e3065b3631e03f2#detailed-version
https://github.com/jay-johnson/network-pipeline/tree/1db3d340a1c6cef39d68c9e01e3065b3631e03f2#detailed-version
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/0d280216e3697f0d2cf7456095e37df64be73040/compose.yml#L29-L35
https://github.com/jay-johnson/antinex-client

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

It supports auto-publishing captured network traffic to the AntiNex REST API for using pre-trained Deep Neural
Networks to make predictions on if this is an attack record or not using the AntiNex Core. Please refer to the Making
Live Predictions using Pre-trained Neural Networks section for more details. Publishing to the REST API can run
inside docker as well.

There are many choices to build a machine learning or AI model but for now I am using Jupyter Hub to build a
pre-trained model for defending against OWASP Dynamic Analysis tools for finding vulnerabilities running in my
owasp-jenkins repository.

• Django REST Framework + JWT + Swagger - run prepare-dataset and train-keras-deep-neural-network
using a multi-tenant Django 2.0+ REST API server supporting JWT and Swagger

• Simulations directory - capturing simulated attacks using ZAP with Django, Flask, React, Vue, and Spring

• Prepare Dataset section - preparing training csvs from captured recordings

• Train Models section - training machine learning and AI models from prepared csvs and please check out the
AntiNex Core which has accuracies over 99.8% and a Jupyter notebook

• Datasets repository - captured recordings if you want to see what some of the data will look like

8.1.2 Why?

After digging into how Internet Chemotherapy worked with a simple Nerfball approach, I wanted to see if I could train
machine learning and AI models to defend this type of attack. Since the network is the first line to defend on the edge,

8.1. Network Pipeline 55

http://antinex-network-pipeline.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt
https://github.com/jay-johnson/antinex-core#django---train-and-predict
https://github.com/jay-johnson/network-pipeline#making-live-predictions-using-pre-trained-neural-networks
https://github.com/jay-johnson/network-pipeline#making-live-predictions-using-pre-trained-neural-networks
https://github.com/jay-johnson/celery-connectors#running-jupyterhub-with-postgres-and-ssl
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://github.com/jay-johnson/owasp-jenkins
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#django-rest-framework--jwt--swagger--keras--tensorflow
https://github.com/jay-johnson/network-pipeline/tree/master/simulations
https://github.com/jay-johnson/network-pipeline/#prepare-dataset
https://github.com/jay-johnson/network-pipeline/#train-models
https://github.com/jay-johnson/antinex-core#antinex-core
https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Protecting-Django.ipynb
https://github.com/jay-johnson/network-pipeline-datasets
https://0x00sec.org/t/internet-chemotherapy/4664
https://github.com/jay-johnson/nerfball

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

on-premise or in the cloud, I wanted to start building the first line of defense and open source it. Also I do not know
of any other toolchains to build defensive models using the network layer for free.

This repository automates dataset creation for training models by capturing network traffic on layers 2, 3 and 4 of the
OSI model. Once a dataset has been Prepared it can be used to Train a Deep Neural Network. Pre-trained Deep Neural
Networks can make live predictions on good or bad network traffic with the AntiNex Core.

8.1.3 How does it work?

This framework uses free open source tools to create the following publish-subscriber workflow:

1. Network traffic matches a capture tool filter

2. Capture tool converts packet layers into JSON

3. Capture tool publishes converted JSON dictionary to a message broker (Redis or RabbitMQ)

4. Packet processor consumes dictionary from message broker

5. Packet processor flattens dictionary

6. Packet processor periodically writes csv dataset from collected, flattened dictionaries (configurable for snap-
shotting csv on n-th number of packets consumed)

7. Flatten packets are published using JWT to a pre-trained Deep Neural Network for making predictions on if the
network traffic is good or bad

Envisioned Deployment

• For on-premise and cloud environments, this framework would deploy capture tools to load balancers and ap-
plication servers. These capture tool agents would publish to a redis cluster outside of the load balancers and
application servers for analysis. By doing this, models could also be tuned to defend on the load balancer tier or
application server tier independently.

• Remote edge machines would be running deployed, pre-trained, package-maintained models that are integrated
with a prediction API. Periodic uploads of new, unexpected records would be sent encrypted back to the cloud
for retraining models for helping defend an IoT fleet.

Detailed Version

The pipeline is a capture forwarding system focused on redundancy and scalability. Components-wise there are pre-
configured capture tools that hook into the network devices on the operating system. If the capture tools find any
traffic that matches their respective filter, then they json-ify the captured packet and forward it as a nested dictionary
to a redis server (rabbitmq works as well, but requires setting the environment variables for authentication). Once the
traffic packet dictionaries are in redis/rabbitmq, the packet processor consumes the nested dictionary and flattens them
using pandas. The packet processors are set up to write csv datasets from the consumed, flattened dictionaries every
100 packets (you can configure the SAVE_AFTER_NUM environment variable to a larger number too).

Here are the included, standalone capture tools (all of which require root privileges to work):

1. capture_arp.py

2. capture_icmp.py

3. capture_ssh.py

4. capture_tcp.py

5. capture_telnet.py

56 Chapter 8. Components

https://en.wikipedia.org/wiki/OSI_model
https://github.com/jay-johnson/antinex-client#prepare-a-dataset
https://github.com/jay-johnson/antinex-client#using-pre-trained-neural-networks-to-make-predictions
https://github.com/jay-johnson/antinex-core#django---train-and-predict
https://github.com/jay-johnson/network-pipeline/blob/master/network_pipeline/scripts/capture_arp.py
https://github.com/jay-johnson/network-pipeline/blob/master/network_pipeline/scripts/capture_icmp.py
https://github.com/jay-johnson/network-pipeline/blob/master/network_pipeline/scripts/capture_ssh.py
https://github.com/jay-johnson/network-pipeline/blob/master/network_pipeline/scripts/capture_tcp.py
https://github.com/jay-johnson/network-pipeline/blob/master/network_pipeline/scripts/capture_telnet.py

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

6. capture_udp.py

AntiNex Stack Status

AntiNex Network Pipeline is part of the AntiNex stack:

Component Build Docs Link Docs Build
REST API Docs
Core Worker Docs
Network Pipeline Docs
AI Utils Docs
Client Docs

8.1.4 What packets and layers are supported?

Layer 2

• Ethernet

• ARP

Layer 3

• IPv4

• IPv6

• ICMP

Layer 4

• TCP

• UDP

• Raw - hex data from TCP or UDP packet body

Layer 5

• DNS

How do I get started?

1. Install from pypi or build the development environment

pip install network-pipeline

Or you can set up the repository locally

8.1. Network Pipeline 57

https://github.com/jay-johnson/network-pipeline/blob/master/network_pipeline/scripts/capture_udp.py
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt
https://travis-ci.org/jay-johnson/train-ai-with-django-swagger-jwt.svg
http://antinex.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex/badge/?version=latest
https://github.com/jay-johnson/antinex-core
https://travis-ci.org/jay-johnson/antinex-core.svg
http://antinex-core-worker.readthedocs.io/en/latest/
http://antinex-core-worker.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/network-pipeline
https://travis-ci.org/jay-johnson/network-pipeline.svg
http://antinex-network-pipeline.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex-network-pipeline/badge/?version=latest
https://github.com/jay-johnson/antinex-utils
https://travis-ci.org/jay-johnson/antinex-utils.svg
http://antinex-ai-utilities.readthedocs.io/en/latest/
http://antinex-ai-utilities.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/antinex-client
https://travis-ci.org/jay-johnson/antinex-client.svg
http://antinex-client.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex-client/badge/?version=latest
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/Address_Resolution_Protocol
https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/Domain_Name_System

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/network-pipeline.git /opt/antinex/
→˓pipeline
cd /opt/antinex/pipeline
virtualenv -p python3 /tmp/netpipevenv && source /tmp/netpipevenv/bin/activate &&
→˓pip install -e .

2. Start Redis

This guide assumes redis is running in docker, but as long as there’s an accessible redis server on port 6379 you
can use that too. RabbitMQ works as well, but requires setting the environment variables for connectivity.

if you do not have docker-compose installed, you can try to install it with:
pip install docker-compose
./start.sh

3. Verify Redis is Working

redis-cli

or

telnet localhost 6379

4. Start Packet Processor for Consuming Messages

Activate the virtual environment

source /tmp/netpipevenv/bin/activate

Start it up

./network_pipeline/scripts/packets_redis.py

8.1.5 Making Live Predictions using Pre-trained Neural Networks

There are a few ways to make live predictions depending on how the pipeline and AntiNex assets are deployed:

1. Running the Full Django REST API stack using compose.yml (Co-located mode)

This will start the Packet Processor using the default compose.yml file:

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/0d280216e3697f0d2cf7456095e37df64be73040/
compose.yml#L105

Clone the repo:

git clone https://github.com/jay-johnson/train-ai-with-django-swagger-jwt.git /
→˓opt/antinex/api
cd /opt/antinex/api

Start the co-located container stack with the compose.yml file:

docker-compose -f compose.yml up -d

2. Running Only the Network Pipeline compose.yml (Distributed mode)

This will just start the Network Pipeline container and assumes the REST API is running on another host.

58 Chapter 8. Components

https://github.com/jay-johnson/network-pipeline/blob/master/network_pipeline/scripts/packets_redis.py
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/0d280216e3697f0d2cf7456095e37df64be73040/compose.yml#L105
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/0d280216e3697f0d2cf7456095e37df64be73040/compose.yml#L105

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

https://github.com/jay-johnson/network-pipeline/blob/master/compose.yml

Use the command:

docker-compose -f compose.yml up

3. Running the Packet Processor Manually Using Environment Variables (Development mode)

Make sure to source the correct environment file before running packets_redis.py (Packet Processor).

As an example the repository has a version that works with the compose.yml docker deployment:

source envs/antinex-dev.env

When building your own credentials and datasets, you may have special characters in the env file. Please use
set -o allexport; source envs/antinex-dev.env; set +o allexport; to handle this
case.

Right now the defaults do not have special characters, so the source command works just fine:

export ANTINEX_PUBLISH_ENABLED=1
export ANTINEX_URL=http://localhost:8010
export ANTINEX_USER=root
export ANTINEX_EMAIL=123321
export ANTINEX_PASSWORD=123321
export ANTINEX_PUBLISH_TO_CORE=1
export ANTINEX_USE_MODEL_NAME=Full-Django-AntiNex-Simple-Scaler-DNN
export ANTINEX_PUBLISH_REQUEST_FILE=/opt/antinex/client/examples/predict-rows-
→˓scaler-full-django.json
export ANTINEX_FEATURES_TO_PROCESS=idx,arp_hwlen,arp_hwtype,arp_id,arp_op,arp_
→˓plen,arp_ptype,dns_default_aa,dns_default_ad,dns_default_an,dns_default_ancount,
→˓dns_default_ar,dns_default_arcount,dns_default_cd,dns_default_id,dns_default_
→˓length,dns_default_ns,dns_default_nscount,dns_default_opcode,dns_default_qd,dns_
→˓default_qdcount,dns_default_qr,dns_default_ra,dns_default_rcode,dns_default_rd,
→˓dns_default_tc,dns_default_z,dns_id,eth_id,eth_type,icmp_addr_mask,icmp_code,
→˓icmp_gw,icmp_id,icmp_ptr,icmp_seq,icmp_ts_ori,icmp_ts_rx,icmp_ts_tx,icmp_type,
→˓icmp_unused,ip_id,ip_ihl,ip_len,ip_tos,ip_version,ipv6_fl,ipv6_hlim,ipv6_nh,
→˓ipv6_plen,ipv6_tc,ipv6_version,ipvsix_id,pad_id,tcp_dport,tcp_fields_options.
→˓MSS,tcp_fields_options.NOP,tcp_fields_options.SAckOK,tcp_fields_options.
→˓Timestamp,tcp_fields_options.WScale,tcp_id,tcp_seq,tcp_sport,udp_dport,udp_id,
→˓udp_len,udp_sport
export ANTINEX_IGNORE_FEATURES=
export ANTINEX_SORT_VALUES=
export ANTINEX_ML_TYPE=classification
export ANTINEX_PREDICT_FEATURE=label_value
export ANTINEX_SEED=42
export ANTINEX_TEST_SIZE=0.2
export ANTINEX_BATCH_SIZE=32
export ANTINEX_EPOCHS=15
export ANTINEX_NUM_SPLITS=2
export ANTINEX_LOSS=binary_crossentropy
export ANTINEX_OPTIMIZER=adam
export ANTINEX_METRICS=accuracy
export ANTINEX_HISTORIES=val_loss,val_acc,loss,acc
export ANTINEX_VERSION=1
export ANTINEX_CONVERT_DATA=1
export ANTINEX_CONVERT_DATA_TYPE=float
export ANTINEX_MISSING_VALUE=-1.0
export ANTINEX_INCLUDE_FAILED_CONVERSIONS=false

(continues on next page)

8.1. Network Pipeline 59

https://github.com/jay-johnson/network-pipeline/blob/master/compose.yml
https://github.com/jay-johnson/network-pipeline/blob/master/compose.yml#L5

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

export ANTINEX_CLIENT_VERBOSE=1
export ANTINEX_CLIENT_DEBUG=0

Load the Deep Neural Network into the AntiNex Core

Note: If you are running without the docker containers, please make sure to clone the client and datasets to disk:

mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/antinex-client.git /opt/antinex/client
git clone https://github.com/jay-johnson/antinex-datasets.git /opt/antinex/antinex-
→˓datasets

Load the Django Model into the Core

Please note this can take a couple minutes. . .

ai_train_dnn.py -u root -p 123321 -f deep-neural-networks/full-django.json

...

30196 -1.0 -1.000000 -1.000000
30197 -1.0 -1.000000 -1.000000
30198 -1.0 -1.000000 -1.000000
30199 -1.0 -1.000000 -1.000000

[30200 rows x 72 columns]

8.1.6 Capture Network Traffic

These tools are installed with the pip and require running with root to be able to hook into the local network devices
for capturing traffic correctly.

Scapy currently provides the traffic capture tooling, but the code already has a semi-functional scalable, multi-
processing engine to replace it. This will be ideal for dropping on a heavily utilized load balancer tier and run as
an agent managed as a systemd service.

1. Login as root

sudo su

2. Activate the Virtual Environment

source /tmp/netpipevenv/bin/activate

3. Capture TCP Data

By default TCP capture is only capturing traffic on ports: 80, 443, 8010, and 8443. This can be modified
with the NETWORK_FILTER environment variable. Please avoid capturing on the redis port (default 6379) and
rabbitmq port (default 5672) to prevent duplicate sniffing on the already-captured data that is being forwarded
to the message queues which are ideally running in another virtual machine.

This guide assumes you are running all these tools from the base directory of the repository.

60 Chapter 8. Components

https://github.com/phaethon/scapy

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

./network_pipeline/scripts/capture_tcp.py

Capture SSH Traffic

./network_pipeline/scripts/capture_ssh.py

Capture Telnet Traffic

./network_pipeline/scripts/capture_telnet.py

4. Capture UDP Data

With another terminal, you can capture UDP traffic at the same time

sudo su

Start UDP capture tool

source /tmp/netpipevenv/bin/activate && ./network_pipeline/scripts/capture_udp.py

5. Capture ARP Data

With another terminal, you can capture ARP traffic at the same time

sudo su

Start ARP capture tool

source /tmp/netpipevenv/bin/activate && ./network_pipeline/scripts/capture_arp.py

6. Capture ICMP Data

With another terminal, you can capture ICMP traffic at the same time

sudo su

Start ICMP capture tool

source /tmp/netpipevenv/bin/activate && ./network_pipeline/scripts/capture_icmp.py

8.1.7 Simulating Network Traffic

ZAP Testing with Web Applications

The repository includes ZAPv2 simulations targeting the follow application servers:

• Django 2.0.1

• Flask RESTplus with Swagger

• React + Redux

8.1. Network Pipeline 61

https://github.com/jay-johnson/network-pipeline/tree/master/simulations/django
https://github.com/jay-johnson/network-pipeline/tree/master/simulations/flask
https://github.com/jay-johnson/network-pipeline/tree/master/simulations/react-redux

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

• Vue

• Spring Pet Clinic

I will be updating this guide with more ZAP simulation tests in the future.

Please refer to the Simulations README for more details on running these to capture network traffic during an attack.

Quick Simulations

If you want to just get started, here are some commands and tools to start simulating network traffic for seeding your
csv datasets.

1. Send a TCP message

./network_pipeline/scripts/tcp_send_msg.py

2. Send a UDP message

(Optional) Start a UDP server for echo-ing a response on port 17000

sudo ./network_pipeline/scripts/listen_udp_port.py
2018-01-27T17:39:47.725377 - Starting UDP Server address=127.0.0.1:17000
→˓backlog=5 size=1024 sleep=0.5 shutdown=/tmp/udp-shutdown-listen-server-127.0.0.
→˓1-17000

Send the UDP message

./network_pipeline/scripts/udp_send_msg.py
sending UDP: address=('0.0.0.0', 17000) msg=testing UDP msg time=2018-01-27
→˓17:40:04 - cc9cdc1a-a900-48c5-acc9-b8ff5919087b

(Optional) Verify the UDP server received the message

2018-01-27T17:40:04.915469 received UDP data=testing UDP msg time=2018-01-27
→˓17:40:04 - cc9cdc1a-a900-48c5-acc9-b8ff5919087b

3. Simulate traffic with common shell tools

nslookup 127.0.0.1; nslookup 0.0.0.0; nslookup localhost

dig www.google.com; dig www.cnn.com; dig amazon.com

wget https://www.google.com; wget http://www.cnn.com; wget https://amazon.com

ping google.com; ping amazon.com

4. Run all of them at once

nslookup 127.0.0.1; nslookup 0.0.0.0; nslookup localhost; dig www.google.com; dig
→˓www.cnn.com; dig amazon.com; wget https://www.google.com; wget http://www.cnn.
→˓com; wget https://amazon.com; ping google.com; ping amazon.com

Capturing an API Simulation

Simulations that can automate + fuzz authenticated REST API service layers like ZAP are available in the AntiNex
datasets repository for training Deep Neural Networks. The included Flask ZAP Simulation does login using OAuth

62 Chapter 8. Components

https://github.com/jay-johnson/network-pipeline/tree/master/simulations/vue
https://github.com/jay-johnson/network-pipeline/tree/master/simulations/spring
https://github.com/jay-johnson/network-pipeline/tree/master/simulations#network-traffic-simulations
https://github.com/zaproxy/zaproxy
https://github.com/jay-johnson/antinex-datasets
https://github.com/jay-johnson/antinex-datasets
https://github.com/jay-johnson/network-pipeline/blob/master/simulations/zap/tests/flask-zap.py#L26

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

2.0 with ZAP for REST API validation, but there is a known issue with the swagger openapi integration within ZAP
that limits the functionality (for now):

https://github.com/zaproxy/zaproxy/issues/4072

1. Start a local server listening on TCP port 80

sudo ./network_pipeline/scripts/listen_tcp_port.py
2018-01-27T23:59:22.344687 - Starting Server address=127.0.0.1:80 backlog=5
→˓size=1024 sleep=0.5 shutdown=/tmp/shutdown-listen-server-127.0.0.1-80

2. Run a POST curl

curl -i -vvvv -POST http://localhost:80/TESTURLENDPOINT -d '{"user_id", "1234",
→˓"api_key": "abcd", "api_secret": "xyz"}'

* Trying 127.0.0.1...

* TCP_NODELAY set

* Connected to localhost (127.0.0.1) port 80 (#0)
> POST /TESTURLENDPOINT HTTP/1.1
> Host: localhost
> User-Agent: curl/7.55.1
> Accept: */*
> Content-Length: 59
> Content-Type: application/x-www-form-urlencoded
>

* upload completely sent off: 59 out of 59 bytes
POST /TESTURLENDPOINT HTTP/1.1
Host: localhost
User-Agent: curl/7.55.1
Accept: */*
Content-Length: 59
Content-Type: application/x-www-form-urlencoded

* Connection #0 to host localhost left intact
{"user_id", "1234", "api_key": "abcd", "api_secret": "xyz"}

3. Verify local TCP server received the POST

2018-01-28T00:00:54.445294 received msg=7 data=POST /TESTURLENDPOINT HTTP/1.1
Host: localhost
User-Agent: curl/7.55.1
Accept: */*
Content-Length: 59
Content-Type: application/x-www-form-urlencoded

{"user_id", "1234", "api_key": "abcd", "api_secret": "xyz"} replying

Larger Traffic Testing

1. Host a local server listening on TCP port 80 using nc

sudo nc -l 80

2. Send a large TCP msg to the nc server

./network_pipeline/scripts/tcp_send_large_msg.py

8.1. Network Pipeline 63

https://github.com/zaproxy/zaproxy/issues/4072

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

8.1.8 Inspecting the CSV Datasets

By default, the dataset csv files are saved to: /tmp/netdata-*.csv and you can set a custom path by exporting
the environment variables DS_NAME, DS_DIR or OUTPUT_CSV as needed.

ls /tmp/netdata-*.csv
/tmp/netdata-2018-01-27-13-13-58.csv /tmp/netdata-2018-01-27-13-18-25.csv /tmp/
→˓netdata-2018-01-27-16-44-08.csv
/tmp/netdata-2018-01-27-13-16-38.csv /tmp/netdata-2018-01-27-13-19-46.csv
/tmp/netdata-2018-01-27-13-18-03.csv /tmp/netdata-2018-01-27-13-26-34.csv

8.1.9 Prepare Dataset

This is a guide for building training datasets from the recorded csvs in the network pipeline datasets repository. Once
a dataset is prepared locally, you can use the modelers to build and tune machine learning and AI models.

Install

This will make sure your virtual environment is using the latest pandas pip and install the latest ML/AI pips. Please
run it from the repository’s base directory.

source /tmp/netpipevenv/bin/activate
pip install --upgrade -r ./network_pipeline/scripts/builders/requirements.txt

Overview

I have not uploaded a local recording from my development stacks, so for now this will prepare a training dataset
by randomly applying non-attack - 0 and attack - 1 labels for flagging records as attack and non-attack
records.

Setup

Please export the path to the datasets repository on your host:

export DS_DIR=<path_to_datasets_base_directory>

Or clone the repository to the default value for the environment variable (DS_DIR=/opt/antinex/datasets)
with:

mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/network-pipeline-datasets.git /opt/antinex/
→˓datasets

Build Dataset

This will take a few moments to prepare the csv files.

64 Chapter 8. Components

https://github.com/jay-johnson/network-pipeline-datasets
https://github.com/jay-johnson/network-pipeline/network_pipeline/scripts/modelers

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

prepare_dataset.py
2018-01-31 23:38:04,298 - builder - INFO - start - builder
2018-01-31 23:38:04,298 - builder - INFO - finding pipeline csvs in dir=/opt/antinex/
→˓datasets/*/*.csv
2018-01-31 23:38:04,299 - builder - INFO - adding file=/opt/antinex/datasets/react-
→˓redux/netdata-2018-01-29-13-36-35.csv
2018-01-31 23:38:04,299 - builder - INFO - adding file=/opt/antinex/datasets/spring/
→˓netdata-2018-01-29-15-00-12.csv
2018-01-31 23:38:04,299 - builder - INFO - adding file=/opt/antinex/datasets/vue/
→˓netdata-2018-01-29-14-12-44.csv
2018-01-31 23:38:04,299 - builder - INFO - adding file=/opt/antinex/datasets/django/
→˓netdata-2018-01-28-23-12-13.csv
2018-01-31 23:38:04,299 - builder - INFO - adding file=/opt/antinex/datasets/django/
→˓netdata-2018-01-28-23-06-05.csv
2018-01-31 23:38:04,299 - builder - INFO - adding file=/opt/antinex/datasets/flask-
→˓restplus/netdata-2018-01-29-11-30-02.csv

Verify Dataset and Tracking Files

By default the environment variable OUTPUT_DIR writes the dataset csv files to /tmp:

ls -lrth /tmp/*.csv
-rw-rw-r-- 1 jay jay 26M Jan 31 23:38 /tmp/fulldata_attack_scans.csv
-rw-rw-r-- 1 jay jay 143K Jan 31 23:38 /tmp/cleaned_attack_scans.csv

Additionally, there are data governance, metadata and tracking files created as well:

ls -lrth /tmp/*.json
-rw-rw-r-- 1 jay jay 2.7K Jan 31 23:38 /tmp/fulldata_metadata.json
-rw-rw-r-- 1 jay jay 1.8K Jan 31 23:38 /tmp/cleaned_metadata.json

8.1.10 Train Models

I am using Keras to train a Deep Neural Network to predict attack (1) and non-attack (0) records using a prepared
dataset. Please checkout the keras_dnn.py module if you are interested in learning more. Please let me know if there
are better ways to set up the neural network layers or hyperparameters as well.

1. Source the virtual environment

source /tmp/netpipevenv/bin/activate

2. (Optional) Train with a different dataset

By default the environment variable CSV_FILE=/tmp/cleaned_attack_scans.csv can be changed
to train models with another prepared dataset.

To do so run:

export CSV_FILE=<path_to_csv_dataset_file>

8.1.11 Train a Keras Deep Neural Network

Included in the pip is a keras_dnn.py script. Below is a sample log from a training run that scored an 83.33%
accuracy predicting attack vs non-attack records.

8.1. Network Pipeline 65

https://github.com/keras-team/keras
https://github.com/jay-johnson/network-pipeline/blob/master/network_pipeline/scripts/modelers/keras_dnn.py

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

Please note, this can take a few minutes if you are not using a GPU. Also the accuracy results will be different
depending on how you set up the model.

keras_dnn.py
Using TensorFlow backend.
2018-02-01 00:01:30,653 - keras-dnn - INFO - start - keras-dnn
2018-02-01 00:01:30,653 - keras-dnn - INFO - Loading csv=/tmp/cleaned_attack_scans.csv
2018-02-01 00:01:30,662 - keras-dnn - INFO - Predicting=label_value with features=[
→˓'eth_type', 'idx', 'ip_ihl', 'ip_len', 'ip_tos', 'ip_version', 'label_value', 'tcp_
→˓dport', 'tcp_fields_options.MSS', 'tcp_fields_options.Timestamp', 'tcp_fields_
→˓options.WScale', 'tcp_seq', 'tcp_sport'] ignore_features=['label_name', 'ip_src',
→˓'ip_dst', 'eth_src', 'eth_dst', 'src_file', 'raw_id', 'raw_load', 'raw_hex_load',
→˓'raw_hex_field_load', 'pad_load', 'eth_dst', 'eth_src', 'ip_dst', 'ip_src']
→˓records=2217
2018-02-01 00:01:30,664 - keras-dnn - INFO - splitting rows=2217 into X_train=1773 X_
→˓test=444 Y_train=1773 Y_test=444
2018-02-01 00:01:30,664 - keras-dnn - INFO - creating sequential model
2018-02-01 00:01:30,705 - keras-dnn - INFO - compiling model
2018-02-01 00:01:30,740 - keras-dnn - INFO - fitting model - please wait
Train on 1773 samples, validate on 444 samples
Epoch 1/50
2018-02-01 00:01:30.947551: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your
→˓CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.
→˓1 SSE4.2 AVX AVX2
1773/1773 [==============================] - 1s 704us/step - loss: 2.5727 - acc: 0.
→˓8404 - val_loss: 2.6863 - val_acc: 0.8333
Epoch 2/50
1773/1773 [==============================] - 1s 626us/step - loss: 2.5727 - acc: 0.
→˓8404 - val_loss: 2.6863 - val_acc: 0.8333

...

Epoch 50/50
1773/1773 [==============================] - 1s 629us/step - loss: 2.5727 - acc: 0.
→˓8404 - val_loss: 2.6863 - val_acc: 0.8333
444/444 [==============================] - 0s 17us/step
2018-02-01 00:02:29,118 - keras-dnn - INFO - Accuracy: 83.33333333333334

Optional Tweaks

1. Colorized Logging for Debugging

Export the path to the colorized logger config. This examples assumes you are in the base directory of the
repository.

export LOG_CFG=$(pwd)/network_pipeline/log/colors-logging.json

Linting

flake8 .

pycodestyle –exclude=./simulations,.tox,.eggs

66 Chapter 8. Components

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

License

Apache 2.0 - Please refer to the LICENSE for more details

8.2 REST API

Multi-tenant service with Swagger, Celery and JWT

Please refer to the repository for the latest code and documentation: https://github.com/jay-johnson/
train-ai-with-django-swagger-jwt

The REST API is the gateway for running anything in AntiNex. Only authenticated users can use the included API
requests for:

1. Preparing a New Dataset

Here is the workflow for Preparing Datasets. CSVs must be synced across the hosts running the REST API and
Celery Workers to function.

2. Running a Training Job

3. Making New Predictions using Pre-trained Deep Neural Networks

Here is the workflow. Notice CSVs are not required on any of the hosts anymore.

8.2. REST API 67

https://github.com/jay-johnson/network-pipeline/blob/master/LICENSE
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

4. Getting a Job’s record

5. Getting a Job’s Results including predictions

6. Managing User accounts

8.2.1 AntiNex REST API

Automate training AI to defend applications with a Django 2.0+ REST Framework + Celery + Swagger + JWT using
Keras and Tensorflow.

Now supports building the same highly accurate deep neural networks as the AntiNex Core (99.8% accuracy with
Django, Flask, React + Redux, Vue and Spring). This repository is fully dockerized and after the django celery worker
finishes processing, it will auto-push predictions to the core’s celery worker which is decoupled from django and the
django database. The core’s celery worker stores pre-trained AI neural networks in memory for faster predictions and
supports re-training models as needed.

For those wanting to scale up their processing speeds, AntiNex deploys on OpenShift Container Platform and Kuber-
netes with persistent database volumes for Postgres (Crunchy Data) and Redis (Bitnami)

AntiNex Stack Status

The AntiNex REST API is part of the AntiNex stack:

Component Build Docs Link Docs Build
REST API Docs
Core Worker Docs
Network Pipeline Docs
AI Utils Docs
Client Docs

68 Chapter 8. Components

https://github.com/jay-johnson/antinex-core#antinex-core
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/tree/master/openshift#antinex-on-openshift-container-platform
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/tree/master/openshift#antinex-on-openshift-container-platform
https://github.com/CrunchyData/crunchy-containers
https://hub.docker.com/r/bitnami/redis/
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt
https://travis-ci.org/jay-johnson/train-ai-with-django-swagger-jwt.svg
http://antinex.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex/badge/?version=latest
https://github.com/jay-johnson/antinex-core
https://travis-ci.org/jay-johnson/antinex-core.svg
http://antinex-core-worker.readthedocs.io/en/latest/
http://antinex-core-worker.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/network-pipeline
https://travis-ci.org/jay-johnson/network-pipeline.svg
http://antinex-network-pipeline.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex-network-pipeline/badge/?version=latest
https://github.com/jay-johnson/antinex-utils
https://travis-ci.org/jay-johnson/antinex-utils.svg
http://antinex-ai-utilities.readthedocs.io/en/latest/
http://antinex-ai-utilities.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/antinex-client
https://travis-ci.org/jay-johnson/antinex-client.svg
http://antinex-client.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex-client/badge/?version=latest

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

Supported API Requests

• Prepare a Dataset

• Train a Deep Neural Network from a Prepared Dataset using Keras and Tensorflow

• Multi-Tenant Deep Neural Network Training with Simulations

• Get recent Training jobs (including Models as json and weights)

• Get recent Training results (nice for reviewing historical accuracy)

• Get recent Prepared Datasets

• Creating and managing users

This repository was built to help capture non-attack network traffic and to improve the accuracy of the Keras
+ Tensorflow Deep Neural Networks by providing them a simple multi-tenant REST API that has Swagger + JWT
authentication baked into a single web application. By default, all created Deep Neural Networks are automatically
saved as JSON including model weights. It also does not require a database (unless you want to set it up), and will be
scaled out with Celery Connectors in the future. Please refer to the Network Pipeline repository for more details. This
Django application server also comes with a functional Celery worker for running heavyweight, time-intensive tasks
required for asynchronous use cases. This is good for when you are trying to train a deep net that takes a few minutes,
and you do not want your HTTP client to time out.

I plan to automate the tests in a loop and then release the captured HTTP traffic to compile the first non-attack
dataset for pairing up with the OWASP attack data which is already recorded and available in:

https://github.com/jay-johnson/network-pipeline-datasets

Update: 2018-02-25 - These merged datasets and accuracies are now available in the repository:

https://github.com/jay-johnson/antinex-datasets

8.2.2 Watch Getting Started

Assuming your host has the pips already cached locally this takes about a minute.

8.2.3 Install

Tested on Ubuntu 17.10, Ubuntu 18.04 and works on OpenShift Container Platform with Kubernetes.

mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/train-ai-with-django-swagger-jwt.git /opt/
→˓antinex/api
cd /opt/antinex/api
./install.sh

8.2.4 Getting Started With Docker

You can run without these optional steps and just use the default SQLite database. If you want to use docker and
download all the containers, you can use the compose.yml file to start all of the containers and download the latest
ai-core docker image which is ~2.5 GB on disk (built with Dockerfile and stored on Docker Hub).

To start all run:

8.2. REST API 69

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#prepare-a-new-dataset-from-captured-recordings
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#train-a-keras-deep-neural-network-with-tensorflow
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#multi-tenant-simulations
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#get-recent-ml-job-results
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#get-recent-ml-jobs
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#get-recent-prepared-datasets
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt#swagger
https://github.com/jay-johnson/celery-connectors
https://github.com/jay-johnson/network-pipeline
https://github.com/jay-johnson/network-pipeline-datasets
https://github.com/jay-johnson/antinex-datasets
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/tree/master/openshift
https://github.com/jay-johnson/antinex-core/blob/master/docker/Dockerfile
https://hub.docker.com/r/jayjohnson/ai-core/

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

if you do not have docker compose installed, you can try installing it with:
pip install docker-compose
./run-all.sh

Verify the containers started

docker ps
CONTAINER ID IMAGE COMMAND
→˓CREATED STATUS PORTS NAMES
d34c8973066b jayjohnson/antinex-pipeline:latest "/bin/sh -c 'cd /opt..." 2
→˓hours ago Up 2 hours pipeline
12ef5482bc17 jayjohnson/antinex-worker:latest "/bin/sh -c 'cd /opt..." 2
→˓hours ago Up 2 hours worker
da7970ae165f jayjohnson/antinex-api:latest "/bin/sh -c 'cd /opt..." 2
→˓hours ago Up 2 hours api
11a2c95b7247 jayjohnson/antinex-core:latest "/bin/sh -c 'cd /opt..." 2
→˓hours ago Up 2 hours core
1f26d89c8c2c jayjohnson/antinex-jupyter:latest "/opt/antinex/core/d..." 2
→˓hours ago Up 2 hours jupyter
4905682ff3b4 postgres:10.4-alpine "docker-entrypoint.s..." 2
→˓hours ago Up 2 hours 0.0.0.0:5432->5432/tcp postgres
fd8300740935 redis:4.0.9-alpine "docker-entrypoint.s..." 2
→˓hours ago Up 2 hours 0.0.0.0:6379->6379/tcp redis
7c682ba78adb jayjohnson/pgadmin4:1.0.0 "python ./usr/local/..." 2
→˓hours ago Up 2 hours 0.0.0.0:83->5050/tcp pgadmin

Quick links

If you are running all the containers, you can use these links to move around:

• Use Swagger to Train a new Deep Neural Network (login with trex and 123321)

http://localhost:8010/swagger/#!/ml/ml_create

• Jupyter Notebook showing how the Deep Neural Networks are Trained (login with admin and ALT + r to
view the slideshow)

http://localhost:8888/notebooks/AntiNex-Protecting-Django.ipynb

• Jupyter Notebook shoing how to use Pre-trained Deep Neural Networks with AntiNex

http://localhost:8888/notebooks/AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.ipynb

If you are interested in running locally without the large container image, you can run the broker and database stack
with docker containers for simulating a more production-ready environment. Here’s the containers these steps will
start:

1. Postgres 10

2. Redis (Pub/Sub, Caching and Celery Tasks)

3. pgAdmin4 - Web app for managing Postgres

Here’s how to run it:

1. Source the environment

source envs/drf-dev.env

2. Start the Stack

70 Chapter 8. Components

http://localhost:8010/swagger/#!/ml/ml_create
http://localhost:8888/notebooks/AntiNex-Protecting-Django.ipynb
http://localhost:8888/notebooks/AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.ipynb

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

./run-stack.sh
Starting stack: full-stack-dev.yml
Creating postgres ... done
Creating pgadmin ...
Creating postgres ...

3. Verify the containers are running

docker ps
CONTAINER ID IMAGE COMMAND CREATED
→˓ STATUS PORTS
→˓ NAMES
2c7cfbd9328e postgres:10.2-alpine "docker-entrypoint.s..." 3
→˓minutes ago Up 3 minutes 0.0.0.0:5432->5432/tcp
→˓ postgres
9c34c9588349 jayjohnson/pgadmin4:1.0.0 "python ./usr/local/..." 3
→˓minutes ago Up 3 minutes 0.0.0.0:83->5050/tcp
→˓ pgadmin
75e325113424 redis:4.0.5-alpine "docker-entrypoint.s..." 3
→˓minutes ago Up 3 minutes 0.0.0.0:6379->6379/tcp
→˓ redis

4. Initialize the Postgres database

export USE_ENV=drf-dev
./run-migrations.sh

5. Login to pgAdmin4

http://localhost:83/browser/

User: admin@email.com Password: postgres

6. Register the Postgres server

(a) Right click on “Servers” and then “Create Server”

(b) On the “General” tab enter a name like “webapp”

(c) On the “Connection” tab enter:

Host: postgres

Username: postgres

Password: postgres

(d) Click “Save password?” check box

(e) Click the “Save” button

(f) Navigate down the tree:

Servers > webapp (or the name you entered) > Databases > webapp > Schemas > public > Tables

(g) Confirm there’s database tables with names like:

pipeline_mljob
pipeline_mljobresult
pipeline_mlprepare

8.2. REST API 71

http://localhost:83/browser/

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

8.2.5 Start

By default, this project uses gunicorn to start, but you can change to uwsgi by running export
APP_SERVER=uwsgi before starting. Both app servers should work just fine.

Note: if you are running the docker “full stack” please make sure to run: export USE_ENV=drf-dev before
starting the django application, or you can use run-django.sh which should do the same as start.sh.

./start.sh

Starting Django listening on TCP port 8010
http://localhost:8010/swagger

[2018-02-07 11:27:20 -0800] [10418] [INFO] Starting gunicorn 19.7.1
[2018-02-07 11:27:20 -0800] [10418] [INFO] Listening at: http://127.0.0.1:8010 (10418)
[2018-02-07 11:27:20 -0800] [10418] [INFO] Using worker: sync
[2018-02-07 11:27:20 -0800] [10418] [INFO] DJANGO_DEBUG=yes - auto-reload enabled
[2018-02-07 11:27:20 -0800] [10418] [INFO] Server is ready. Spawning workers
[2018-02-07 11:27:20 -0800] [10422] [INFO] Booting worker with pid: 10422
[2018-02-07 11:27:20 -0800] [10422] [INFO] Worker spawned (pid: 10422)
[2018-02-07 11:27:20 -0800] [10423] [INFO] Booting worker with pid: 10423
[2018-02-07 11:27:20 -0800] [10423] [INFO] Worker spawned (pid: 10423)
[2018-02-07 11:27:20 -0800] [10424] [INFO] Booting worker with pid: 10424
[2018-02-07 11:27:20 -0800] [10424] [INFO] Worker spawned (pid: 10424)
[2018-02-07 11:27:20 -0800] [10426] [INFO] Booting worker with pid: 10426
[2018-02-07 11:27:20 -0800] [10426] [INFO] Worker spawned (pid: 10426)
[2018-02-07 11:27:20 -0800] [10430] [INFO] Booting worker with pid: 10430
[2018-02-07 11:27:20 -0800] [10430] [INFO] Worker spawned (pid: 10430)

8.2.6 Celery Worker

Start the Worker

Start the Celery worker in a new terminal to process published Django work tasks for heavyweight, time-intensive
operations.

./run-worker.sh

Create User

Create the user trex with password 123321:

source tests/users/user_1.sh \
&& ./tests/create-user.sh \
&& env | grep API | sort

Creating user: trex on http://localhost:8010/users/
{"id":2,"username":"trex","email":"bugs@antinex.com"}
Getting token for user: trex
{"token":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJ1c2VyX2lkIjo2LCJ1c2VybmFtZSI6InRyZXgiLCJleHAiOjE1MjgyNjExMjgsImVtYWlsIjoiYnVnc0BhbnRpbmV4LmNvbSJ9.
→˓W6Lb2N1v8S3e6EMT7RuTvfUQMTbKjrmYzhMxtFQ9jhk"}
API_DEBUG=false
API_EMAIL=bugs@antinex.com

(continues on next page)

72 Chapter 8. Components

http://docs.gunicorn.org/
https://uwsgi-docs.readthedocs.io/en/latest/

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

API_FIRSTNAME=Guest
API_LASTNAME=Guest
API_PASSWORD=123321
API_URL=http://localhost:8010
API_USER=trex
API_VERBOSE=true

8.2.7 Automation

All of these scripts run in the tests directory:

cd tests

Make sure the virtual environment has been loaded:

source ~/.venvs/venvdrfpipeline/bin/activate

Clone the datasets repository

git clone https://github.com/jay-johnson/network-pipeline-datasets /opt/antinex/datasets

Prepare a new Dataset from Captured Recordings

./build-new-dataset.py

Train a Keras Deep Neural Network with Tensorflow

./create-keras-dnn.py

...

2018-02-03 00:31:24,342 - create-keras-dnn - INFO - SUCCESS - Post Response
→˓status=200 reason=OK
2018-02-03 00:31:24,342 - create-keras-dnn - INFO - {'job': {'id': 1, 'user_id': 2,
→˓'user_name': 'trex', 'title': 'Keras DNN - network-pipeline==1.0.9', 'desc':
→˓'Tensorflow backend with simulated data', 'ds_name': 'cleaned', 'algo_name': 'dnn',
→˓'ml_type': 'keras', 'status': 'initial', 'control_state': 'active', 'predict_feature
→˓': 'label_value', 'training_data': {}, 'pre_proc': {}, 'post_proc': {}, 'meta_data
→˓': {}, 'tracking_id': 'ml_701552d5-c761-4c69-9258-00d05ff81a48', 'version': 1,
→˓'created': '2018-02-03 08:31:17', 'updated': '2018-02-03 08:31:17', 'deleted': ''},
→˓'results': {'id': 1, 'user_id': 2, 'user_name': 'trex', 'job_id': 1, 'status':
→˓'finished', 'version': 1, 'acc_data': {'accuracy': 83.7837837300859}, 'error_data':
→˓None, 'created': '2018-02-03 08:31:24', 'updated': '2018-02-03 08:31:24', 'deleted
→˓': ''}}

Create a Highly Accurate Deep Neural Network for Protecting Django

This is the same API request the core uses to build the Django DNN with an accuracy of 99.8%:

https://github.com/jay-johnson/antinex-core#accuracy-and-prediction-report

8.2. REST API 73

https://github.com/jay-johnson/network-pipeline-datasets
https://github.com/jay-johnson/antinex-core#accuracy-and-prediction-report

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

with Notebook:

https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Protecting-Django.ipynb

./create-keras-dnn.py -f ./scaler-full-django-antinex-simple.json

Please wait... this can take a few minutes

...

2018-03-21 06:04:48,314 - ml_tasks - INFO - saving job=83 results
2018-03-21 06:04:50,387 - ml_tasks - INFO - updating job=83 results=83
2018-03-21 06:04:53,957 - ml_tasks - INFO - task - ml_job - done - ml_job.id=83 ml_
→˓result.id=83 accuracy=99.81788079470199 predictions=30200

Train and Predict with just a Dictionary List of Records

This will send a list of records to the API to train and make predictions. This mimics the live-prediction capability in
the core for reusing pre-trained DNNs to make predictions faster. I use it to send the newest records to predict, so I do
not have to generate lots of csv files everywhere + all-the-time.

./create-keras-dnn.py -f ./predict-rows-scaler-full-django.json

Train and Predict using the AntiNex Core

This will train and cache a deep neural network using the AntiNex Core. Once trained, the core can make future
predictions with the same API call without having to retrain. This makes predictions much faster.

./create-keras-dnn.py -f only-publish-scaler-full-django.json

The core trains a deep neural network and persists it in a dictionary that uses the label value on the request to store the
trained model. Future predictions must continue to reuse the same label value on the request to avoid waiting for a
retraining cycle. Here is the label value used in the previous request which is:

"label": "Full-Django-AntiNex-Simple-Scaler-DNN"

Make Predictions for a List of Records

If you have a list of records the API, Worker and Core support making predictions for each record in a list.

Predict using the AntiNex Worker:

./create-keras-dnn.py -f predict-rows-scaler-full-django.json

Predict using the AntiNex Core:

./create-keras-dnn.py -f only-publish-predict-rows-simple.json

8.2.8 Advanced Naming for Multi-Tenant Environments

Problems will happen if multiple users are sharing the same host’s /tmp/ directory with the default naming conven-
tions. To prevent issues, it is recommended to change the output dataset directory to separate directories per user and

74 Chapter 8. Components

https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Protecting-Django.ipynb
https://github.com/jay-johnson/antinex-core
https://github.com/jay-johnson/antinex-core/blob/521c019469ac41958f64dcf9483b7ce902311438/antinex_core/antinex_processor.py#L150-L153
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/0487fdc6b62d15a67754f131c02eb5d71faf3897/tests/only-publish-scaler-full-django.json#L2

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

to make sure the directories are accessible by the Django server processes. Here’s an example of changing the output
directory to my user which triggers the custom name detection. This detection means I will see logs for the training
command to run with my newly generated dataset and metadata files:

mkdir /opt/jay
export OUTPUT_DIR=/opt/jay/
./build-new-dataset.py

...

Train a Neural Network with:
./create-keras-dnn.py /opt/jay/cleaned_attack_scans.csv /opt/jay/cleaned_metadata.json

If changing the output directory is not possible, then users will need to make sure the file names are unique be-
fore running. Here’s an example naming strategy for the csv datasets and metadata files to prevent collisions. The
build-new-dataset.py script will also suggest the training command to run when you activate custom names:

Prepare a Named Dataset

./build-new-dataset.py /tmp/<MyFirstName>_$(date +"%Y-%m-%d-%H-%m-%N")_full.csv /tmp/
→˓<MyFirstName>_$(date +"%Y-%m-%d-%H-%m-%N")_readytouse.csv

Example that shows the suggested training command to run using the named dataset files on disk:

./build-new-dataset.py /tmp/jay_$(date +"%Y-%m-%d-%H-%m-%N")_full.csv /tmp/jay_$(date
→˓+"%Y-%m-%d-%H-%m-%N")_readytouse.csv

...

Train a Neural Network with:
./create-keras-dnn.py /tmp/jay_2018-02-05-21-02-274468596_readytouse.csv /tmp/cleaned_
→˓meta-54525d8da8a54e9d9005a29c63f2918b.json

Confirm the files were created:

ls -lrth /tmp/jay_2018-02-05-21-02-274468596_readytouse.csv /tmp/cleaned_meta-
→˓54525d8da8a54e9d9005a29c63f2918b.json
-rw-rw-r-- 1 jay jay 143K Feb 5 21:23 /tmp/jay_2018-02-05-21-02-274468596_readytouse.
→˓csv
-rw-rw-r-- 1 jay jay 1.8K Feb 5 21:23 /tmp/cleaned_meta-
→˓54525d8da8a54e9d9005a29c63f2918b.json

Please note, if you use filenames and set the OUTPUT_DIR environment variable, the environment variable takes
priority (even if you specify /path/to/some/dir/uniquename.csv). The dataset and metadata files will be
stored in the OUTPUT_DIR directory:

echo $OUTPUT_DIR
/opt/jay/

./build-new-dataset.py jay_$(date +"%Y-%m-%d-%H-%m-%N")_full.csv jay_$(date +"%Y-%m-
→˓%d-%H-%m-%N")_readytouse.csv

...

Train a Neural Network with:
./create-keras-dnn.py /opt/jay/jay_2018-02-05-22-02-521671337_readytouse.csv /opt/jay/
→˓cleaned_meta-2b961845162a4d6e9e382c6f540302fe.json (continues on next page)

8.2. REST API 75

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

8.2.9 Swagger

Create a User

http://localhost:8010/swagger/#!/users/users_create

Click on the yellow Example Value section to paste in defaults or paste in your version of:

{
"username": "trex",
"password": "123321",
"email": "bugs@antinex.com"

}

Login User

If you want to login as the super user:

• Username: trex

• Password: 123321

http://localhost:8010/api-auth/login/

Logout User

http://localhost:8010/swagger/?next=/swagger/#!/accounts/accounts_logout_create

8.2.10 JWT

Get a Token

This will validate authentication with JWT is working:

./get_user_jwt_token.sh
{"token":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJ1c2VyX2lkIjo0LCJ1c2VybmFtZSI6InJvb3QiLCJleHAiOjE1MTc1OTg3NTIsImVtYWlsIjoicm9vdEBlbWFpbC5jb20ifQ.
→˓ip3Lj5o4SCK4TARlDuLyw-Dc6qMkt8xUx8WsQwIn2uo"}

(Optional) If you have jq installed:

./get_user_jwt_token.sh | jq
{

"token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJ1c2VyX2lkIjo0LCJ1c2VybmFtZSI6InJvb3QiLCJleHAiOjE1MTc1OTg3NDEsImVtYWlsIjoicm9vdEBlbWFpbC5jb20ifQ.
→˓WAIatDGkeFJbH6LL_4rRQaAydZXcE8j0KK7dBnA2GJU"
}

http://localhost:8010/swagger/?next=/swagger/#!/ml/ml_run_create

76 Chapter 8. Components

http://localhost:8010/swagger/#!/users/users_create
http://localhost:8010/api-auth/login/
http://localhost:8010/swagger/?next=/swagger/#!/accounts/accounts_logout_create
http://localhost:8010/swagger/?next=/swagger/#!/ml/ml_run_create

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

8.2.11 Development

Swagger Prepare a new Dataset from Captured Recordings

http://localhost:8010/swagger/#!/mlprepare/mlprepare_create

Paste in the following values and click Try it Out:

{
"title": "Prepare new Dataset from recordings",
"desc": "",
"ds_name": "new_recording",
"full_file": "/tmp/fulldata_attack_scans.csv",
"clean_file": "/tmp/cleaned_attack_scans.csv",
"meta_suffix": "metadata.json",
"output_dir": "/tmp/",
"ds_dir": "/opt/antinex/datasets",
"ds_glob_path": "/opt/antinex/datasets/*/*.csv",
"pipeline_files": {

"attack_files": []
},
"meta_data": {},
"post_proc": {

"drop_columns": [
"src_file",
"raw_id",
"raw_load",
"raw_hex_load",
"raw_hex_field_load",
"pad_load",
"eth_dst",
"eth_src",
"ip_dst",
"ip_src"

],
"predict_feature": "label_name"

},
"label_rules": {

"set_if_above": 85,
"labels": [

"not_attack",
"attack"

],
"label_values": [

0,
1

]
},
"version": 1

}

Swagger Train a Keras Deep Neural Network with Tensorflow

http://0.0.0.0:8010/swagger/#!/ml/ml_create

Paste in the following values and click Try it Out:

1. Build the Django DNN for Predicting Network Attacks

8.2. REST API 77

http://localhost:8010/swagger/#!/mlprepare/mlprepare_create
http://0.0.0.0:8010/swagger/#!/ml/ml_create

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

{
"label": "Full-Django-AntiNex-Simple-Scaler-DNN",
"dataset": "/opt/antinex/antinex-datasets/v1/webapps/django/training-ready/v1_

→˓django_cleaned.csv",
"ml_type": "classification",
"predict_feature": "label_value",
"features_to_process": [

<list of comma separated column names>
],
"ignore_features": [

<optional list of comma separated column names>
],
"sort_values": [

<optional list of comma separated column names>
],
"seed": 42,
"test_size": 0.2,
"batch_size": 32,
"epochs": 15,
"num_splits": 2,
"loss": "binary_crossentropy",
"optimizer": "adam",
"metrics": [

"accuracy"
],
"histories": [

"val_loss",
"val_acc",
"loss",
"acc"

],
"model_desc": {

"layers": [
{

"num_neurons": 200,
"init": "uniform",
"activation": "relu"

},
{

"num_neurons": 1,
"init": "uniform",
"activation": "sigmoid"

}
]

},
"label_rules": {

"labels": [
"not_attack",
"not_attack",
"attack"

],
"label_values": [

-1,
0,
1

]
},

(continues on next page)

78 Chapter 8. Components

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

"version": 1
}

2. Prototyping with a List of Records

I use this script to convert a configurable number of records from the bottom of a csv file which helps build these
type of prediction json files:

https://github.com/jay-johnson/antinex-core/blob/master/antinex_core/scripts/convert_bottom_rows_to_json.
py

./create-keras-dnn.py -f ./readme-predict-demo-1.json

Here are the contents of ./tests/readme-predict-demo-1.json

{
"label": "Prediction-Model-Prototyping",
"predict_rows": [

{
"_dataset_index": 1,
"label_value": 1,
"more_keys": 54.0

},
{

"_dataset_index": 2,
"label_value": 1,
"more_keys": 24.0

},
{

"_dataset_index": 2,
"label_value": 0,
"more_keys": 33.0

}
],
"ml_type": "classification",
"predict_feature": "label_value",
"features_to_process": [

"more_keys"
],
"ignore_features": [
],
"sort_values": [
],
"seed": 42,
"test_size": 0.2,
"batch_size": 32,
"epochs": 15,
"num_splits": 2,
"loss": "binary_crossentropy",
"optimizer": "adam",
"metrics": [

"accuracy"
],
"histories": [

"val_loss",
"val_acc",
"loss",

(continues on next page)

8.2. REST API 79

https://github.com/jay-johnson/antinex-core/blob/master/antinex_core/scripts/convert_bottom_rows_to_json.py
https://github.com/jay-johnson/antinex-core/blob/master/antinex_core/scripts/convert_bottom_rows_to_json.py

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

"acc"
],
"model_desc": {

"layers": [
{

"num_neurons": 200,
"init": "uniform",
"activation": "relu"

},
{

"num_neurons": 1,
"init": "uniform",
"activation": "sigmoid"

}
]

},
"label_rules": {

"labels": [
"not_attack",
"not_attack",
"attack"

],
"label_values": [

-1,
0,
1

]
},
"version": 1

}

3. Deprecated - Using just CSV files

{
"csv_file": "/tmp/cleaned_attack_scans.csv",
"meta_file": "/tmp/cleaned_metadata.json",
"title": "Keras DNN - network-pipeline==1.0.9",
"desc": "Tensorflow backend with simulated data",
"ds_name": "cleaned",
"algo_name": "dnn",
"ml_type": "keras",
"predict_feature": "label_value",
"training_data": "{}",
"pre_proc": "{}",
"post_proc": "{}",
"meta_data": "{}",
"version": 1

}

Verify the Celery Worker Processes a Task without Django

I find the first time I integrate Celery + Django + Redis can be painful. So I try to validate Celery tasks work before
connecting Celery to Django over a message broker (like Redis). Here is a test tool for helping debug this integration
with the celery-loaders project. It’s also nice not having to click through the browser to debug a new task.

1. Run the task test script

80 Chapter 8. Components

https://github.com/jay-johnson/celery-loaders

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

./run-celery-task.py -t drf_network_pipeline.users.tasks.task_get_user -f tests/
→˓celery/task_get_user.json
2018-06-05 22:41:39,426 - run-celery-task - INFO - start - run-celery-task
2018-06-05 22:41:39,426 - run-celery-task - INFO - connecting Celery=run-celery-
→˓task broker=redis://localhost:6379/9 backend=redis://localhost:6379/10 tasks=[
→˓'drf_network_pipeline.users.tasks']
2018-06-05 22:41:39,427 - get_celery_app - INFO - creating celery app=run-celery-
→˓task tasks=['drf_network_pipeline.users.tasks']
2018-06-05 22:41:39,470 - run-celery-task - INFO - app.broker_url=redis://
→˓localhost:6379/9 calling task=drf_network_pipeline.users.tasks.task_get_user
→˓data={'celery_enabled': True, 'cache_key': None, 'use_cache': False, 'data': {
→˓'user_id': 2}}
2018-06-05 22:41:39,535 - run-celery-task - INFO - calling task=drf_network_
→˓pipeline.users.tasks.task_get_user - started job_id=4931e1fc-3610-4259-8ccd-
→˓5724a1c50c79
2018-06-05 22:41:39,549 - run-celery-task - INFO - calling task=drf_network_
→˓pipeline.users.tasks.task_get_user - success job_id=4931e1fc-3610-4259-8ccd-
→˓5724a1c50c79 task_result={'status': 0, 'err': '', 'task_name': '', 'data': {'id
→˓': 2, 'username': 'trex', 'email': 'bugs@antinex.com'}, 'celery_enabled': True,
→˓'use_cache': False, 'cache_key': None}
2018-06-05 22:41:39,549 - run-celery-task - INFO - end - run-celery-task

2. Verify the Celery Worker Processed the Task

If Redis and Celery are working as expected, the logs should print something similar to the following:

2018-06-06 05:41:39,535 - celery.worker.strategy - INFO - Received task: drf_
→˓network_pipeline.users.tasks.task_get_user[4931e1fc-3610-4259-8ccd-5724a1c50c79]
2018-06-06 05:41:39,537 - user_tasks - INFO - task - task_get_user - start req_
→˓node={'celery_enabled': True, 'cache_key': None, 'use_cache': False, 'data': {
→˓'user_id': 2}}
2018-06-06 05:41:39,537 - user_tasks - INFO - finding user=2 cache=False
2018-06-06 05:41:39,539 - celery.worker.request - DEBUG - Task accepted: drf_
→˓network_pipeline.users.tasks.task_get_user[4931e1fc-3610-4259-8ccd-
→˓5724a1c50c79] pid:26
2018-06-06 05:41:39,547 - user_tasks - INFO - found user.id=2 name=trex
2018-06-06 05:41:39,547 - user_tasks - INFO - task - task_get_user result={'status
→˓': 0, 'err': '', 'task_name': '', 'data': {'id': 2, 'username': 'trex', 'email
→˓': 'bugs@antinex.com'}, 'celery_enabled': True, 'use_cache': False, 'cache_key
→˓': None} - done
2018-06-06 05:41:39,550 - celery.app.trace - INFO - Task drf_network_pipeline.
→˓users.tasks.task_get_user[4931e1fc-3610-4259-8ccd-5724a1c50c79] succeeded in 0.
→˓013342023004952352s: {'status': 0, 'err': '', 'task_name': '', 'data': {'id': 2,
→˓ 'username': 'trex', 'email': 'bugs@antinex.com'}, 'celery_enabled': True, 'use_
→˓cache': False, 'cache_key': None}

Additional Legacy Client API Tools

These tools and examples were created before the AntiNex Python Client was released. Please use that for official API
examples.

8.2.12 Get a Prepared Dataset

export PREPARE_JOB_ID=1
./get-a-prepared-dataset.py

8.2. REST API 81

https://github.com/jay-johnson/antinex-client

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

8.2.13 Get an ML Job

Any trained Keras Deep Neural Network models are saved as an ML Job.

export JOB_ID=1
./get-a-job.py

8.2.14 Get an ML Job Result

export JOB_RESULT_ID=1
./get-a-result.py

8.2.15 Get Recent Prepared Datasets

./get-recent-datasets.py

8.2.16 Get Recent ML Jobs

./get-recent-jobs.py

8.2.17 Get Recent ML Job Results

This is nice for reviewing historical accuracy as your tune your models.

./get-recent-results.py

Run Tests

The unit tests can be run:

./run-tests.sh

...

PASSED - unit tests

Or run a single test

source envs/dev.env; cd webapp; source ~/.venvs/venvdrfpipeline/bin/activate
python manage.py test drf_network_pipeline.tests.test_ml.MLJobTest

8.2.18 Multi-Tenant Simulations

Simulations run from the ./tests/ directory.

cd tests

82 Chapter 8. Components

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

Run the default user1 simulation in a new terminal:

./run-user-sim.py

In a new terminal start user2 simulation:

./run-user-sim.py user2

In a new terminal start user3 simulation:

./run-user-sim.py user3

Want to check how many threads each process is using?

It appears that either Keras or Tensorflow are using quite a bit of threads behind the scenes. On Ubuntu you can view
the number of threads used by gunicorn or uwsgi with these commands:

ps -o nlwp $(ps awuwx | grep django | grep -v grep | awk '{print $2}')

If you’re running uwsgi instead of the gunicorn use:

ps -o nlwp $(ps awuwx | grep uwsgi | grep -v grep | awk '{print $2}')

8.2.19 Stop Full Stack

If you are running the “full stack”, then you can run this command to stop the docker containers:

./stop-stack.sh

Testing

1. Set up the Testing Runtime and Environment Variables

source ~/.venvs/venvdrfpipeline/bin/activate
source ./envs/dev.env

2. Change to the webapp directory

Tests need to run in the same directory as the manage.py

cd webapp

3. Run all Tests

python manage.py test

4. Run all Test Cases in a Test module

python manage.py test drf_network_pipeline.tests.test_ml

5. Run a Single Test Case

python manage.py test drf_network_pipeline.tests.test_ml.MLJobTest.test_ml_
→˓predict_helper_works

8.2. REST API 83

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

or

python manage.py test drf_network_pipeline.tests.test_user.AccountsTest.test_
→˓create_user_with_invalid_email

Linting

flake8 .

pycodestyle –exclude=.tox,.eggs,migrations

License

Apache 2.0 - Please refer to the LICENSE for more details

8.2.20 Citations and Included Works

Special thanks to these amazing projects for helping make this easier!

Original Django project template from

https://github.com/jpadilla/django-project-template

Django REST Framework

https://github.com/encode/django-rest-framework

Celery

http://www.celeryproject.org/

User Registration

https://github.com/szopu/django-rest-registration

Swagger for Django

https://github.com/marcgibbons/django-rest-swagger

JWT for Django REST

https://github.com/GetBlimp/django-rest-framework-jwt

Keras

https://github.com/keras-team/keras

84 Chapter 8. Components

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/master/LICENSE
https://github.com/jpadilla/django-project-template
https://github.com/encode/django-rest-framework
http://www.celeryproject.org/
https://github.com/szopu/django-rest-registration
https://github.com/marcgibbons/django-rest-swagger
https://github.com/GetBlimp/django-rest-framework-jwt
https://github.com/keras-team/keras

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

Tensorflow

https://github.com/tensorflow

SQLite

https://www.sqlite.org/index.html

Gunicorn

http://docs.gunicorn.org/

uWSGI

https://uwsgi-docs.readthedocs.io/en/latest/

pgAdmin

https://www.pgadmin.org/

PostgreSQL

https://www.postgresql.org/

Django Cacheops

https://github.com/Suor/django-cacheops

8.3 AntiNex Core

A Celery Worker that can Train and use Pre-trained Models

Please refer to the repository for the latest code and documentation: https://github.com/jay-johnson/antinex-core

The core is a backend worker that supports two API requests:

1. Train a new model

2. Predict using a pre-trained model (if the model does not exist it will initiate a training job)

By default, the core can support up to 100 pre-trained dnn’s for making predictions. Once predictions are finished,
the core uses celery to call the REST API’s celery worker to record the results in the postgres database. The core is
decoupled from a database for keeping it fast and so it can run on constrained environments (IoT).

In the future the core will support loading the weights and model files from disk and out of S3, but that’s for a future
release.

8.3. AntiNex Core 85

https://github.com/tensorflow
https://www.sqlite.org/index.html
http://docs.gunicorn.org/
https://uwsgi-docs.readthedocs.io/en/latest/
https://www.pgadmin.org/
https://www.postgresql.org/
https://github.com/Suor/django-cacheops
https://github.com/jay-johnson/antinex-core

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

8.3.1 AntiNex Core

Automating network exploit detection using highly accurate pre-trained deep neural networks.

As of 2018-03-12, the core can repeatedly predict attacks on Django, Flask, React + Redux, Vue, and Spring appli-
cation servers by training using the pre-recorded AntiNex datasets with cross validation scores above ~99.8% with
automated scaler normalization.

Accuracy + Training + Cross Validation in a Jupyter Notebook

https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Protecting-Django.ipynb

Using a Pre-Trained Deep Neural Network in a Jupyter Notebook

https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.
ipynb

Overview

The core is a Celery worker pool for processing training and prediction requests for deep neural networks to detect
network exploits (Nex) using Keras and Tensorflow in near real-time. Internally each worker manages a buffer of pre-
trained models identified by the label from the initial training request. Once trained, a model can be used for rapid
prediction testing provided the same label name is used on the prediction request. Models can also be re-trained by
using the training api with the same label. While the initial focus is on network exploits, the repository also includes
mock stock data for demonstrating running a worker pool to quickly predict regression data (like stock prices) with
many, pre-trained deep neural networks.

This repository is a standalone training and prediction worker pool that is decoupled from the AntiNex REST API:

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt

AntiNex Stack Status

AntiNex Core Worker is part of the AntiNex stack:

Component Build Docs Link Docs Build
REST API Docs
Core Worker Docs
Network Pipeline Docs
AI Utils Docs
Client Docs

Install

pip install antinex-core

Optional for Generating Images

If you want to generate images please install python3-tk on Ubuntu.

86 Chapter 8. Components

https://github.com/jay-johnson/antinex-datasets
https://travis-ci.org/jay-johnson/antinex-core
https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Protecting-Django.ipynb
https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.ipynb
https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.ipynb
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt
https://travis-ci.org/jay-johnson/train-ai-with-django-swagger-jwt.svg
http://antinex.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex/badge/?version=latest
https://github.com/jay-johnson/antinex-core
https://travis-ci.org/jay-johnson/antinex-core.svg
http://antinex-core-worker.readthedocs.io/en/latest/
http://antinex-core-worker.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/network-pipeline
https://travis-ci.org/jay-johnson/network-pipeline.svg
http://antinex-network-pipeline.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex-network-pipeline/badge/?version=latest
https://github.com/jay-johnson/antinex-utils
https://travis-ci.org/jay-johnson/antinex-utils.svg
http://antinex-ai-utilities.readthedocs.io/en/latest/
http://antinex-ai-utilities.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/antinex-client
https://travis-ci.org/jay-johnson/antinex-client.svg
http://antinex-client.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex-client/badge/?version=latest

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

sudo apt-get install python3-tk

Docker

Start the container for browsing with Jupyter:

if you do not have docker compose installed, you can try installing it with:
pip install docker-compose
cd docker
./start-stack.sh

Open Jupyter Notebook with Django Deep Neural Network Analysis

Default password is: admin

http://localhost:8888/notebooks/AntiNex-Protecting-Django.ipynb

View Notebook Presentation Slides

1. Use Alt + r inside the notebook

2. Use the non-vertical scolling url: http://localhost:8889/Slides-AntiNex-Protecting-Django.slides.html

3. Use the non-vertical scolling url: http://localhost:8890/Slides-AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.
slides.html

Run

Please make sure redis is running and accessible before starting the core:

redis-cli
127.0.0.1:6379>

With redis running and the antinex-core pip installed in the python 3 runtime, use this command to start the core:

./run-antinex-core.sh

Or with celery:

celery worker -A antinex_core.antinex_worker -l DEBUG

Publish a Predict Request

To train and predict with the new automated scaler-normalized dataset with a 99.8% prediction accuracy for detecting
attacks using a wide, two-layer deep neural network with the AntiNex datasets run the following steps.

8.3. AntiNex Core 87

http://localhost:8888/notebooks/AntiNex-Protecting-Django.ipynb
http://localhost:8889/Slides-AntiNex-Protecting-Django.slides.html
http://localhost:8890/Slides-AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.slides.html
http://localhost:8890/Slides-AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.slides.html
https://github.com/jay-johnson/antinex-datasets

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

Clone

Please make sure to clone the dataset repo to the pre-configured location:

mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/antinex-datasets.git /opt/antinex/antinex-
→˓datasets

Django - Train and Predict

./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-django-
→˓antinex-simple.json

Flask - Train and Predict

./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-flask-
→˓antinex-simple.json

React and Redux - Train and Predict

./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-react-redux-
→˓antinex-simple.json

Vue - Train and Predict

./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-vue-antinex-
→˓simple.json

Spring - Train and Predict

./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-spring-
→˓antinex-simple.json

Accuracy and Prediction Report

After a few minutes the final report will be printed out like:

2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30178 - label_value=1.0
→˓predicted=1 label=attack
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30179 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30180 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30181 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30182 - label_value=-1.0
→˓predicted=-1 label=not_attack

(continues on next page)

88 Chapter 8. Components

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30183 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30184 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30185 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30186 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30187 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30188 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30189 - label_value=1.0
→˓predicted=1 label=attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30190 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30191 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30192 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30193 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30194 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30195 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30196 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30197 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30198 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30199 - label_value=-1.0
→˓predicted=-1 label=not_attack
2018-03-11 23:35:00,947 - antinex-prc - INFO - Full-Django-AntiNex-Simple-Scaler-DNN
→˓made predictions=30200 found=30200 accuracy=99.84685430463577
2018-03-11 23:35:00,947 - antinex-prc - INFO - Full-Django-AntiNex-Simple-Scaler-DNN -
→˓ saving model=full-django-antinex-simple-scaler-dnn

If you do not have the datasets cloned locally, you can use the included minimized dataset from the repo:

./antinex_core/scripts/publish_predict_request.py -f training/scaler-django-antinex-
→˓simple.json

Publish a Train Request

./antinex_core/scripts/publish_train_request.py

Publish a Regression Prediction Request

./antinex_core/scripts/publish_regression_predict.py

8.3. AntiNex Core 89

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

JSON API

The AntiNex core manages a pool of workers that are subscribed to process tasks found in two queues (webapp.
train.requests and webapp.predict.requests). Tasks are defined as JSON dictionaries and must have
the following structure:

{
"label": "Django-AntiNex-Simple-Scaler-DNN",
"dataset": "./tests/datasets/classification/cleaned_attack_scans.csv",
"apply_scaler": true,
"ml_type": "classification",
"predict_feature": "label_value",
"features_to_process": [

"eth_type",
"idx",
"ip_ihl",
"ip_len",
"ip_tos",
"ip_version",
"tcp_dport",
"tcp_fields_options.MSS",
"tcp_fields_options.Timestamp",
"tcp_fields_options.WScale",
"tcp_seq",
"tcp_sport"

],
"ignore_features": [
],
"sort_values": [
],
"seed": 42,
"test_size": 0.2,
"batch_size": 32,
"epochs": 10,
"num_splits": 2,
"loss": "binary_crossentropy",
"optimizer": "adam",
"metrics": [

"accuracy"
],
"histories": [

"val_loss",
"val_acc",
"loss",
"acc"

],
"model_desc": {

"layers": [
{

"num_neurons": 250,
"init": "uniform",
"activation": "relu"

},
{

"num_neurons": 1,
"init": "uniform",
"activation": "sigmoid"

}
(continues on next page)

90 Chapter 8. Components

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

]
},
"label_rules": {

"labels": [
"not_attack",
"not_attack",
"attack"

],
"label_values": [

-1,
0,
1

]
},
"version": 1

}

Regression prediction tasks are also supported, and here is an example from an included dataset with mock stock
prices:

{
"label": "Scaler-Close-Regression",
"dataset": "./tests/datasets/regression/stock.csv",
"apply_scaler": true,
"ml_type": "regression",
"predict_feature": "close",
"features_to_process": [

"high",
"low",
"open",
"volume"

],
"ignore_features": [
],
"sort_values": [
],
"seed": 7,
"test_size": 0.2,
"batch_size": 32,
"epochs": 50,
"num_splits": 2,
"loss": "mse",
"optimizer": "adam",
"metrics": [

"accuracy"
],
"model_desc": {

"layers": [
{

"activation": "relu",
"init": "uniform",
"num_neurons": 200

},
{

"activation": null,
"init": "uniform",

(continues on next page)

8.3. AntiNex Core 91

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

"num_neurons": 1
}

]
}

}

Development

virtualenv -p python3 ~/.venvs/antinexcore && source ~/.venvs/antinexcore/bin/
→˓activate && pip install -e .

Testing

Run all

python setup.py test

Run a test case

python -m unittest tests.test_train.TestTrain.test_train_antinex_simple_success_
→˓retrain

Linting

flake8 .

pycodestyle .

License

Apache 2.0 - Please refer to the LICENSE for more details

92 Chapter 8. Components

https://github.com/jay-johnson/antinex-core/blob/master/LICENSE

CHAPTER 9

Additional Components

9.1 AntiNex Client

Please refer to the repository for the latest code and documentation: https://github.com/jay-johnson/antinex-client

This repository is a python client for interacting with the REST API.

9.1.1 AntiNex Python Client

Python API Client for training deep neural networks with the REST API running

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt

Install

pip install antinex-client

AntiNex Stack Status

AntiNex client is part of the AntiNex stack:

Component Build Docs Link Docs Build
REST API Docs
Core Worker Docs
Network Pipeline Docs
AI Utils Docs
Client Docs

93

https://github.com/jay-johnson/antinex-client
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt
https://travis-ci.org/jay-johnson/antinex-client
http://antinex-client.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt
https://travis-ci.org/jay-johnson/train-ai-with-django-swagger-jwt.svg
http://antinex.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex/badge/?version=latest
https://github.com/jay-johnson/antinex-core
https://travis-ci.org/jay-johnson/antinex-core.svg
http://antinex-core-worker.readthedocs.io/en/latest/
http://antinex-core-worker.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/network-pipeline
https://travis-ci.org/jay-johnson/network-pipeline.svg
http://antinex-network-pipeline.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex-network-pipeline/badge/?version=latest
https://github.com/jay-johnson/antinex-utils
https://travis-ci.org/jay-johnson/antinex-utils.svg
http://antinex-ai-utilities.readthedocs.io/en/latest/
http://antinex-ai-utilities.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/antinex-client
https://travis-ci.org/jay-johnson/antinex-client.svg
http://antinex-client.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex-client/badge/?version=latest

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

9.1.2 Run Predictions

These examples use the default user root with password 123321. It is advised to change this to your own user in
the future.

Train a Deep Neural Network with a JSON List of Records

ai -u root -p 123321 -f examples/predict-rows-scaler-django-simple.json

Train a Deep Neural Network to Predict Attacks with the AntiNex Datasets

Please make sure the datasets are available to the REST API, Celery worker, and AntiNex Core worker. The datasets
are already included in the docker container ai-core provided in the default compose.yml file:

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/51f731860daf134ea2bd3b68468927c614c83ee5/
compose.yml#L53-L104

If you’re running outside docker make sure to clone the repo with:

git clone https://github.com/jay-johnson/antinex-datasets.git /opt/antinex/antinex-
→˓datasets

Train the Django Defensive Deep Neural Network

Please wait as this will take a few minutes to return and convert the predictions to a pandas DataFrame.

ai -u root -p 123321 -f examples/scaler-full-django-antinex-simple.json

...

[30200 rows x 72 columns]

Using Pre-trained Neural Networks to make Predictions

The AntiNex Core manages pre-trained deep neural networks in memory. These can be used with the REST API by
adding the "publish_to_core": true to a request while running with the REST API compose.yml docker
containers running.

Run:

ai -u root -p 123321 -f examples/publish-to-core-scaler-full-django.json

Here is the diff between requests that will run using a pre-trained model and one that will train a new neural network:

antinex-client$ diff examples/publish-to-core-scaler-full-django.json examples/scaler-
→˓full-django-antinex-simple.json
5d4
< "publish_to_core": true,
antinex-client$

94 Chapter 9. Additional Components

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/51f731860daf134ea2bd3b68468927c614c83ee5/compose.yml#L53-L104
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/51f731860daf134ea2bd3b68468927c614c83ee5/compose.yml#L53-L104
https://github.com/jay-johnson/antinex-core
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/master/compose.yml

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

Prepare a Dataset

ai_prepare_dataset.py -u root -p 123321 -f examples/prepare-new-dataset.json

Get Job Record for a Deep Neural Network

Get a user’s MLJob record by setting: -i <MLJob.id>

This include the model json or model description for the Keras DNN.

ai_get_job.py -u root -p 123321 -i 4

Get Predictions Results for a Deep Neural Network

Get a user’s MLJobResult record by setting: -i <MLJobResult.id>

This includes predictions from the training or prediction job.

ai_get_results.py -u root -p 123321 -i 4

Get a Prepared Dataset

Get a user’s MLPrepare record by setting: -i <MLPrepare.id>

ai_get_prepared_dataset.py -u root -p 123321 -i 15

Using a Client Built from Environment Variables

This is how the Network Pipeline streams data to the AntiNex Core to make predictions with pre-trained models.

Export the example environment file:

source examples/example-prediction.env

Run the client prediction stream script

ai_env_predict.py -f examples/predict-rows-scaler-full-django.json

Development

virtualenv -p python3 ~/.venvs/antinexclient && source ~/.venvs/antinexclient/bin/
→˓activate && pip install -e .

Testing

Run all

python setup.py test

9.1. AntiNex Client 95

https://github.com/jay-johnson/network-pipeline
https://github.com/jay-johnson/antinex-core

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

Linting

flake8 .

pycodestyle .

License

Apache 2.0 - Please refer to the LICENSE for more details

9.2 AntiNex Utils

Please refer to the repository for the latest code and documentation: https://github.com/jay-johnson/antinex-client

This repository is a standalone library that uses Scikit-Learn, Keras and Tensorflow to:

1. Create dnn’s from either: JSON or default values

2. Transform datasets into scaler normalized values

3. Make predictions with new or pre-trained dnn’s for classification and regression problems

4. Merge predictions with the original dataset for easier review and analysis

9.2.1 AntiNex AI Utilities

Standalone utilities for training AI. Used in:

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt

Install

pip install antinex-utils

Development

1. Set up the repository

mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/antinex-utils.git /opt/antinex/utils
cd /opt/antinex/utils

2. Set up the virtual env and install

virtualenv -p python3 ~/.venvs/antinexutils && source ~/.venvs/antinexutils/bin/
→˓activate && pip install -e .

Testing

Run all

96 Chapter 9. Additional Components

https://github.com/jay-johnson/antinex-client/blob/master/LICENSE
https://github.com/jay-johnson/antinex-client
https://travis-ci.org/jay-johnson/antinex-utils
http://antinex-ai-utilities.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

python setup.py test

Run a test case

python -m unittest tests.test_classification.TestClassification.test_classification_
→˓deep_dnn

python -m unittest tests.test_regression.TestRegression.test_dataset_regression_using_
→˓scaler

AntiNex Stack Status

AntiNex AI Utilities is part of the AntiNex stack:

Component Build Docs Link Docs Build
REST API Docs
Core Worker Docs
Network Pipeline Docs
AI Utils Docs
Client Docs

Linting

flake8 .

pycodestyle –exclude=.tox,.eggs

License

Apache 2.0 - Please refer to the LICENSE for more details

9.2. AntiNex Utils 97

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt
https://travis-ci.org/jay-johnson/train-ai-with-django-swagger-jwt.svg
http://antinex.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex/badge/?version=latest
https://github.com/jay-johnson/antinex-core
https://travis-ci.org/jay-johnson/antinex-core.svg
http://antinex-core-worker.readthedocs.io/en/latest/
http://antinex-core-worker.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/network-pipeline
https://travis-ci.org/jay-johnson/network-pipeline.svg
http://antinex-network-pipeline.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex-network-pipeline/badge/?version=latest
https://github.com/jay-johnson/antinex-utils
https://travis-ci.org/jay-johnson/antinex-utils.svg
http://antinex-ai-utilities.readthedocs.io/en/latest/
http://antinex-ai-utilities.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/antinex-client
https://travis-ci.org/jay-johnson/antinex-client.svg
http://antinex-client.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex-client/badge/?version=latest
https://github.com/jay-johnson/antinex-utils/blob/master/LICENSE

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

98 Chapter 9. Additional Components

CHAPTER 10

API Reference

10.1 Deploying a Distributed AI Stack to Kubernetes on CentOS

Install and manage a Kubernetes cluster with helm on a single CentOS 7 vm or in multi-host mode that runs the cluster
on 3 CentOS 7 vms. Once running, you can deploy a distributed, scalable python stack capable of delivering a resilient
REST service with JWT for authentication and Swagger for development. This service uses a decoupled REST API
with two distinct worker backends for routing simple database read and write tasks vs long-running tasks that can use
a Redis cache and do not need a persistent database connection. This is handy for not only simple CRUD applications
and use cases, but also serving a secure multi-tenant environment where multiple users manage long-running tasks
like training deep neural networks that are capable of making near-realtime predictions.

This guide was built for deploying the AntiNex stack of docker containers on a Kubernetes single host or multi-host
cluster:

99

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

• Managing a Multi-Host Kubernetes Cluster with an External DNS Server

• Cert Manager with Let’s Encrypt SSL support

• A Rook Ceph Cluster for Persistent Volumes

• Minio S3 Object Store

• Redis

• Postgres

• Django REST API with JWT and Swagger

• Django REST API Celery Workers

• Jupyter

• Core Celery Workers

• pgAdmin4

• (Optional) Splunk with TCP and HEC Service Endpoints

10.2 Getting Started

Note: Please ensure for single-vm hosting that the CentOS machine has at least 4 CPU cores and more than 8 GB
ram. Here is a screenshot of the CPU utilization during AI training with only 3 cores:

10.2.1 Overview

This guide installs the following systems and a storage solution Rook with Ceph cluster (default) or NFS volumes to
prepare the host for running containers and automatically running them on host startup:

• Kubernetes

• Helm and Tiller

100 Chapter 10. API Reference

https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/multihost#managing-a-multi-host-kubernetes-cluster-with-an-external-dns-server
https://github.com/jetstack/cert-manager
https://rook.io/docs/rook/master/ceph-quickstart.html
https://docs.minio.io/docs/deploy-minio-on-kubernetes.html
https://hub.docker.com/r/bitnami/redis/
https://github.com/CrunchyData/crunchy-containers
https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/api/deployment.yml
https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/worker/deployment.yml
https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/jupyter/deployment.yml
https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/core/deployment.yml
https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/pgadmin/crunchy-template-http.json
https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/splunk/deployment.yml
https://github.com/rook/rook/tree/master/cluster/examples/kubernetes/ceph

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

• Minio S3 Storage

• Persistent Storage Volumes using Rook with Ceph cluster or optional NFS Volumes mounted at: /data/k8/
redis, /data/k8/postgres, /data/k8/pgadmin

• Flannel CNI

10.2.2 Install

Here is a video showing how to prepare the host to run a local Kubernetes cluster:

Preparing the host to run Kubernetes requires run this as root

sudo su
./prepare.sh

Note: This has only been tested on CentOS 7 and Ubuntu 18.04 and requires commenting out all swap entries in
/etc/fstab to work

Warning: This guide used to install the cluster on Ubuntu 18.04, but after seeing high CPU utilization after a few
days of operation this guide was moved to CentOS 7. The specific issues on Ubuntu were logged in journalctl
-xe and appeared to be related to “volumes not being found” and “networking disconnects”.

10.3 Validate

1. Install Kubernetes Config

Run as your user

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

Or use the script:

./user-install-kubeconfig.sh

2. Check the Kubernetes Version

kubectl version
Client Version: version.Info{Major:"1", Minor:"11", GitVersion:"v1.11.1",
→˓GitCommit:"b1b29978270dc22fecc592ac55d903350454310a", GitTreeState:"clean",
→˓BuildDate:"2018-07-17T18:53:20Z", GoVersion:"go1.10.3", Compiler:"gc", Platform:
→˓"linux/amd64"}
The connection to the server localhost:8080 was refused - did you specify the
→˓right host or port?

3. Confirm the Kubernetes Pods Are Running

kubectl get pods -n kube-system

10.3. Validate 101

https://docs.minio.io/docs/deploy-minio-on-kubernetes.html
https://github.com/rook/rook/tree/master/cluster/examples/kubernetes/ceph

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

NAME READY STATUS RESTARTS AGE
coredns-78fcdf6894-k8srv 1/1 Running 0 4m
coredns-78fcdf6894-xx8bt 1/1 Running 0 4m
etcd-dev 1/1 Running 0 3m
kube-apiserver-dev 1/1 Running 0 3m
kube-controller-manager-dev 1/1 Running 0 3m
kube-flannel-ds-m8k9w 1/1 Running 0 4m
kube-proxy-p4blg 1/1 Running 0 4m
kube-scheduler-dev 1/1 Running 0 3m
tiller-deploy-759cb9df9-wxvp8 1/1 Running 0 4m

10.4 Deploy Redis and Postgres and the Nginx Ingress

Here is a video showing how to deploy Postgres, Redis, Nginx Ingress, and the pgAdmin4 as pods in the cluster:

Note: Postgres, pgAdmin4 and Redis use Rook Ceph to persist data

Here are the commands to deploy Postgres, Redis, Nginx Ingress, and pgAdmin4 in the cluster:

Note: Please ensure helm is installed and the tiller pod in the kube-system namespace is the Running state or
Redis will encounter deployment issues

Install Go using the ./tools/install-go.sh script or with the commands:

note go install has only been tested on CentOS 7 and Ubuntu 18.04:
sudo su
GO_VERSION="1.11"
GO_OS="linux"
GO_ARCH="amd64"
go_file="go${GO_VERSION}.${GO_OS}-${GO_ARCH}.tar.gz"
curl https://dl.google.com/go/${go_file} --output /tmp/${go_file}
export GOPATH=$HOME/go/bin
export PATH=$PATH:$GOPATH:$GOPATH/bin
tar -C $HOME -xzf /tmp/${go_file}
$GOPATH/go get github.com/blang/expenv
make sure to add GOPATH and PATH to ~/.bashrc

./user-install-kubeconfig.sh

./deploy-resources.sh

If you want to deploy splunk you can add it as an argument:

./deploy-resources.sh splunk

If you want to deploy splunk with Let’s Encrypt make sure to add prod as an argument:

./deploy-resources.sh splunk prod

102 Chapter 10. API Reference

https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/tools/install-go.sh

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.5 Start Applications

Here is a video showing how to start the Django REST Framework, Celery Workers, Jupyter, and the AntiNex Core
as pods in the cluster:

Start all applications as your user with the command:

./start.sh

If you want to deploy the splunk-ready application builds, you can add it as an argument:

./start.sh splunk

If you want to deploy the splunk-ready application builds integrated with Let’s Encrypt TLS encryption, just add prod
as an argument:

./start.sh splunk prod

Note: The Cert Manager is set to staging mode by default and requires the prod argument to prevent accidentally
getting blocked due to Lets Encrypt rate limits

10.5.1 Confirm Pods are Running

Depending on how fast your network connection is the initial container downloads can take a few minutes. Please wait
until all pods are Running before continuing.

kubectl get pods

10.6 Run a Database Migration

Here is a video showing how to apply database schema migrations in the cluster:

To apply new Django database migrations, run the following command:

./api/migrate-db.sh

10.7 Add Ingress Locations to /etc/hosts

When running locally (also known in these docs as dev mode), all ingress urls need to resolve on the network. Please
append the following entries to your local /etc/hosts file on the 127.0.0.1 line:

sudo vi /etc/hosts

Append the entries to the existing 127.0.0.1 line:

127.0.0.1 <leave-original-values-here> api.example.com jupyter.example.com pgadmin.
→˓example.com splunk.example.com s3.example.com ceph.example.com minio.example.com

10.5. Start Applications 103

https://github.com/jetstack/cert-manager

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.8 Using the Minio S3 Object Store

By default, the Kubernetes cluster has a Minio S3 object store running on a Ceph Persistent Volume. S3 is a great
solution for distributing files, datasets, configurations, static assets, build artifacts and many more across components,
regions, and datacenters using an S3 distributed backend. Minio can also replicate some of the AWS Lambda event-
based workflows with Minio bucket event listeners.

For reference, Minio was deployed using this script:

./minio/run.sh

10.8.1 View the Verification Tests on the Minio Dashboard

Login with:

• access key: trexaccesskey

• secret key: trex123321

https://minio.example.com/minio/s3-verification-tests/

10.8.2 Test Minio S3 with Bucket Creation and File Upload and Download

1. Run from inside the API container

./api/ssh.sh
source /opt/venv/bin/activate && run_s3_test.py

Example logs:

creating test file: run-s3-test.txt
connecting: http://minio-service:9000
checking bucket=s3-verification-tests exists
upload_file(run-s3-test.txt, s3-verification-tests, s3-worked-on-2018-08-12-15-21-
→˓02)
upload_file(s3-verification-tests, s3-worked-on-2018-08-12-15-21-02, download-run-
→˓s3-test.txt)
download_filename=download-run-s3-test.txt contents: tested on: 2018-08-12
→˓15:21:02
exit

2. Run from outside the Kubernetes cluster

Note: This tool requires the python boto3 pip is installed

source ./minio/envs/ext.env
./minio/run_s3_test.py

3. Verify the files were uploaded to Minio

https://minio.example.com/minio/s3-verification-tests/

104 Chapter 10. API Reference

https://docs.minio.io/docs/deploy-minio-on-kubernetes.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.minio.io/docs/python-client-api-reference
https://minio.example.com/minio/s3-verification-tests/
https://minio.example.com/minio/s3-verification-tests/

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.9 Using the Rook Ceph Cluster

By default, the Kubernetes cluster is running a Rook Ceph cluster for storage which provides HA persistent volumes
and claims.

You can review the persistent volumes and claims using the Ceph Dashboard:

https://ceph.example.com

10.10 Create a User

Create the user trex with password 123321 on the REST API.

./api/create-user.sh

10.11 Deployed Web Applications

Here are the hosted web application urls. These urls are made accessible by the included nginx-ingress.

10.12 View Django REST Framework

Login with:

• user: trex

• password: 123321

https://api.example.com

10.13 View Swagger

Login with:

• user: trex

• password: 123321

https://api.example.com/swagger

10.14 View Jupyter

Login with:

• password: admin

https://jupyter.example.com

10.9. Using the Rook Ceph Cluster 105

https://rook.io/docs/rook/master/ceph-quickstart.html
https://ceph.example.com
https://api.example.com
https://api.example.com/swagger
https://jupyter.example.com

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.15 View pgAdmin

Login with:

• user: admin@admin.com

• password: 123321

https://pgadmin.example.com

10.16 View Minio S3 Object Storage

Login with:

• access key: trexaccesskey

• secret key: trex123321

https://minio.example.com

10.17 View Ceph

https://ceph.example.com

10.18 View Splunk

Login with:

• user: trex

• password: 123321

https://splunk.example.com

10.19 Training AI with the Django REST API

These steps install the AntiNex python client for training a deep neural network to predict attack packets from recorded
network data (all of which is already included in the docker containers).

1. Create a virtual environment and install the client

virtualenv -p python3 /opt/venv && source /opt/venv/bin/activate
pip install antinex-client

2. Watch the application logs

From a separate terminal, you can tail the Django REST API logs with the command:

./api/logs.sh

From a separate terminal, you can tail the Django Celery Worker logs with the command:

106 Chapter 10. API Reference

https://pgadmin.example.com
https://minio.example.com
https://ceph.example.com
https://splunk.example.com
https://github.com/jay-johnson/antinex-client

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

./worker/logs.sh

From a separate terminal, you can tail the AntiNex Core Worker logs with the command:

./core/logs.sh

Note: Use ctrl + c to stop these log tailing commands

10.20 Train a Deep Neural Network on Kubernetes

With virtual environment set up, we can use the client to train a deep neural network with the included datasets:

Note: this can take a few minutes to finish depending on your hosting resources

ai -a https://api.example.com -u trex -p 123321 -s -f ./tests/scaler-full-django-
→˓antinex-simple.json

While you wait, here is a video showing the training and get results:

10.21 Get the AI Job Record

ai_get_job.py -a https://api.example.com -u trex -p 123321 -i 1

10.22 Get the AI Training Job Results

ai_get_results.py -a https://api.example.com -u trex -p 123321 -i 1 -s

10.23 Standalone Deployments

Below are steps to manually deploy each component in the stack with Kubernetes.

10.24 Deploy Redis

./redis/run.sh

Or manually with the commands:

echo "deploying persistent volume for redis"
kubectl apply -f ./redis/pv.yml
echo "deploying Bitnami redis stable with helm"
helm install \

(continues on next page)

10.20. Train a Deep Neural Network on Kubernetes 107

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

--name redis stable/redis \
--set rbac.create=true \
--values ./redis/redis.yml

10.24.1 Confirm Connectivity

The following commands assume you have redis-tools installed (sudo apt-get install
redis-tools).

redis-cli -h $(kubectl describe pod redis-master-0 | grep IP | awk '{print $NF}') -p
→˓6379
10.244.0.81:6379> info
10.244.0.81:6379> exit

10.24.2 Debug Redis Cluster

1. Examine Redis Master

kubectl describe pod redis-master-0

2. Examine Persistent Volume Claim

kubectl get pvc
NAME STATUS VOLUME
→˓CAPACITY ACCESS MODES STORAGECLASS AGE
redis-ceph-data Bound pvc-1a88e3a6-9df8-11e8-8047-0800270864a8
→˓8Gi RWO rook-ceph-block 46m

3. Examine Persistent Volume

kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM
→˓POLICY STATUS CLAIM STORAGECLASS REASON
→˓ AGE
pvc-1a88e3a6-9df8-11e8-8047-0800270864a8 8Gi RWO Delete
→˓ Bound default/redis-ceph-data rook-ceph-block 46m

10.24.3 Possible Errors

1. Create the Persistent Volumes

Warning FailedMount 2m kubelet, dev MountVolume.SetUp
→˓failed for volume "redis-pv" : mount failed: exit status 32

./pvs/create-pvs.sh

10.24.4 Delete Redis

108 Chapter 10. API Reference

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

helm del --purge redis
release "redis" deleted

10.24.5 Delete Persistent Volume and Claim

1. Delete Claim

kubectl delete pvc redis-data-redis-master-0

2. Delete Volume

kubectl delete pv redis-pv
persistentvolume "redis-pv" deleted

10.25 Deploy Postgres

10.25.1 Install Go

Using Crunchy Data’s postgres containers requires having go installed. Go can be installed using the ./tools/install-
go.sh script or with the commands:

note go install has only been tested on CentOS 7 and Ubuntu 18.04:
sudo su
GO_VERSION="1.11"
GO_OS="linux"
GO_ARCH="amd64"
go_file="go${GO_VERSION}.${GO_OS}-${GO_ARCH}.tar.gz"
curl https://dl.google.com/go/${go_file} --output /tmp/${go_file}
export GOPATH=$HOME/go/bin
export PATH=$PATH:$GOPATH:$GOPATH/bin
tar -C $HOME -xzf /tmp/${go_file}
$GOPATH/go get github.com/blang/expenv
make sure to add GOPATH and PATH to ~/.bashrc

10.25.2 Start

Start the Postgres container within Kubernetes:

./postgres/run.sh

10.25.3 Debug Postgres

1. Examine Postgres

kubectl describe pod primary

Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 2m default-scheduler Successfully assigned default/primary
→˓to dev

(continues on next page)

10.25. Deploy Postgres 109

https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/tools/install-go.sh
https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/tools/install-go.sh
https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/postgres/deployment.yml

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

Normal Pulling 2m kubelet, dev pulling image "crunchydata/crunchy-
→˓postgres:centos7-10.4-1.8.3"
Normal Pulled 2m kubelet, dev Successfully pulled image
→˓"crunchydata/crunchy-postgres:centos7-10.4-1.8.3"
Normal Created 2m kubelet, dev Created container
Normal Started 2m kubelet, dev Started container

2. Examine Persistent Volume Claim

kubectl get pvc
NAME STATUS VOLUME
→˓CAPACITY ACCESS MODES STORAGECLASS AGE
pgadmin4-http-data Bound pvc-19031825-9df8-11e8-8047-0800270864a8
→˓400M RWX rook-ceph-block 46m
primary-pgdata Bound pvc-17652595-9df8-11e8-8047-0800270864a8
→˓400M RWX rook-ceph-block 46m

3. Examine Persistent Volume

kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM
→˓POLICY STATUS CLAIM STORAGECLASS REASON
→˓ AGE
pvc-17652595-9df8-11e8-8047-0800270864a8 400M RWX Delete
→˓ Bound default/primary-pgdata rook-ceph-block 47m
pvc-19031825-9df8-11e8-8047-0800270864a8 400M RWX Delete
→˓ Bound default/pgadmin4-http-data rook-ceph-block 47m

10.26 Deploy pgAdmin

Please confirm go is installed with the Install Go section.

10.26.1 Start

Start the pgAdmin4 container within Kubernetes:

./pgadmin/run.sh

10.26.2 Get Logs

./pgadmin/logs.sh

10.26.3 SSH into pgAdmin

./pgadmin/ssh.sh

110 Chapter 10. API Reference

https://github.com/jay-johnson/deploy-to-kubernetes#install-go
https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/pgadmin/deployment.yml

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.27 Deploy Django REST API

Use these commands to manage the Django REST Framework pods within Kubernetes.

10.27.1 Start

./api/run.sh

10.27.2 Run a Database Migration

To apply a django database migration run the following command:

./api/migrate-db.sh

10.27.3 Get Logs

./api/logs.sh

10.27.4 SSH into the API

./api/ssh.sh

10.28 Deploy Django Celery Workers

Use these commands to manage the Django Celery Worker pods within Kubernetes.

10.28.1 Start

./worker/run.sh

10.28.2 Get Logs

./worker/logs.sh

10.28.3 SSH into the Worker

./worker/ssh.sh

10.27. Deploy Django REST API 111

https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/api/deployment.yml
https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/worker/deployment.yml

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.29 Deploy AntiNex Core

Use these commands to manage the Backend AntiNex Core pods within Kubernetes.

10.29.1 Start

./core/run.sh

10.29.2 Get Logs

./core/logs.sh

10.29.3 SSH into the API

./core/ssh.sh

10.30 Deploy Jupyter

Use these commands to manage the Jupyter pods within Kubernetes.

10.30.1 Start

./jupyter/run.sh

10.30.2 Login to Jupyter

Login with:

• password: admin

https://jupyter.example.com

10.30.3 Get Logs

./jupyter/logs.sh

10.30.4 SSH into Jupyter

./jupyter/ssh.sh

112 Chapter 10. API Reference

https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/core/deployment.yml
https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/jupyter/deployment.yml
https://jupyter.example.com

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.31 Deploy Splunk

Use these commands to manage the Splunk container within Kubernetes.

10.31.1 Start

./splunk/run.sh

10.31.2 Login to Splunk

Login with:

• user: trex

• password: 123321

https://splunk.example.com

10.32 Searching in Splunk

Here is the splunk searching command line tool I use with these included applications:

https://github.com/jay-johnson/spylunking

With search example documentation:

https://spylunking.readthedocs.io/en/latest/scripts.html#examples

10.33 Search using Spylunking

Find logs in splunk using the sp command line tool:

sp -q 'index="antinex" | reverse' -u trex -p 123321 -a $(./splunk/get-api-fqdn.sh) -i
→˓antinex

10.34 Find Django REST API Logs in Splunk

sp -q 'index="antinex" AND name=api | head 20 | reverse' -u trex -p 123321 -a $(./
→˓splunk/get-api-fqdn.sh) -i antinex

10.35 Find Django Celery Worker Logs in Splunk

sp -q 'index="antinex" AND name=worker | head 20 | reverse' -u trex -p 123321 -a $(./
→˓splunk/get-api-fqdn.sh) -i antinex

10.31. Deploy Splunk 113

https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/splunk/deployment.yml
https://splunk.example.com
https://github.com/jay-johnson/spylunking
https://spylunking.readthedocs.io/en/latest/scripts.html#examples

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.36 Find Core Logs in Splunk

sp -q 'index="antinex" AND name=core | head 20 | reverse' -u trex -p 123321 -a $(./
→˓splunk/get-api-fqdn.sh) -i antinex

10.37 Find Jupyter Logs in Splunk

sp -q 'index="antinex" AND name=jupyter | head 20 | reverse' -u trex -p 123321 -a $(./
→˓splunk/get-api-fqdn.sh) -i antinex

Example for debugging sp splunk connectivity from inside an API Pod:

kubectl exec -it api-59496ccb5f-2wp5t -n default echo 'starting search' && /bin/bash -
→˓c "source /opt/venv/bin/activate && sp -q 'index="antinex" AND hostname=local' -u
→˓trex -p 123321 -a 10.101.107.205:8089 -i antinex"

10.37.1 Get Logs

./splunk/logs.sh

10.37.2 SSH into Splunk

./splunk/ssh.sh

10.38 Deploy Nginx Ingress

This project is currently using the nginx-ingress instead of the Kubernetes Ingress using nginx. Use these commands
to manage and debug the nginx ingress within Kubernetes.

Note: The default Yaml file annotations only work with the nginx-ingress customizations

10.38.1 Start

./ingress/run.sh

10.38.2 Get Logs

./ingress/logs.sh

114 Chapter 10. API Reference

https://github.com/nginxinc/kubernetes-ingress
https://github.com/kubernetes/ingress-nginx
https://github.com/nginxinc/kubernetes-ingress/tree/master/examples/customization#customization-of-nginx-configuration

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.38.3 SSH into the Ingress

./ingress/ssh.sh

10.39 View Ingress Nginx Config

When troubleshooting the nginx ingress, it is helpful to view the nginx configs inside the container. Here is how to
view the configs:

./ingress/view-configs.sh

10.40 View a Specific Ingress Configuration

If you know the pod name and the namespace for the nginx-ingress, then you can view the configs from the command
line with:

app_name="jupyter"
app_name="pgadmin"
app_name="api"
use_namespace="default"
pod_name=$(kubectl get pods -n ${use_namespace} | awk '{print $1}' | grep nginx |
→˓head -1)
kubectl exec -it ${pod_name} -n ${use_namespace} cat /etc/nginx/conf.d/${use_
→˓namespace}-${app_name}-ingress.conf

10.41 Deploy Splunk

10.41.1 Start

To deploy splunk you can add the argument splunk to the ./deploy-resources.sh splunk script. Or you can manually
run it with the command:

./splunk/run.sh

Or if you want to use Let’s Encrypt for SSL:

./splunk/run.sh prod

10.42 Deploy Splunk-Ready Applications

After deploying the splunk pod, you can deploy the splunk-ready applications with the command:

./start.sh splunk

10.39. View Ingress Nginx Config 115

https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/deploy-resources.sh

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.42.1 Get Logs

./splunk/logs.sh

10.42.2 SSH into Splunk

./splunk/ssh.sh

10.42.3 View Ingress Config

./splunk/view-ingress-config.sh

10.43 Create your own self-signed x509 TLS Keys, Certs and Certifi-
cate Authority with Ansible

If you have openssl installed you can use this ansible playbook to create your own certificate authority (CA), keys and
certs.

1. Create the CA, Keys and Certificates

cd ansible
ansible-playbook -i inventory_dev create-x509s.yml

2. Check the CA, x509, keys and certificates for the client and server were created

ls -l ./ssl

10.44 Deploying Your Own x509 TLS Encryption files as Kubernetes
Secrets

This is a work in progress, but in dev mode the cert-manager is not in use. Instead the cluster utilizes pre-generated
x509s TLS SSL files created with the included ansible playbook create-x509s.yml. Once created, you can deploy them
as Kubernetes secrets using the deploy-secrets.sh script and reload them at any time in the future.

10.44.1 Deploy Secrets

Run this to create the TLS secrets:

./ansible/deploy-secrets.sh

10.44.2 List Secrets

116 Chapter 10. API Reference

https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/ansible/create-x509s.yml
https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/ansible/deploy-secrets.sh

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

kubectl get secrets | grep tls
tls-ceph kubernetes.io/tls 2 36m
tls-client kubernetes.io/tls 2 36m
tls-database kubernetes.io/tls 2 36m
tls-docker kubernetes.io/tls 2 36m
tls-jenkins kubernetes.io/tls 2 36m
tls-jupyter kubernetes.io/tls 2 36m
tls-k8 kubernetes.io/tls 2 36m
tls-kafka kubernetes.io/tls 2 36m
tls-kibana kubernetes.io/tls 2 36m
tls-minio kubernetes.io/tls 2 36m
tls-nginx kubernetes.io/tls 2 36m
tls-pgadmin kubernetes.io/tls 2 36m
tls-phpmyadmin kubernetes.io/tls 2 36m
tls-rabbitmq kubernetes.io/tls 2 36m
tls-redis kubernetes.io/tls 2 36m
tls-restapi kubernetes.io/tls 2 36m
tls-s3 kubernetes.io/tls 2 36m
tls-splunk kubernetes.io/tls 2 36m
tls-webserver kubernetes.io/tls 2 36m

10.44.3 Reload Secrets

If you want to deploy new TLS secrets at any time, use the reload argument with the deploy-secrets.sh
script. Doing so will delete the original secrets and recreate all of them using the new TLS values:

./ansible/deploy-secrets.sh -r

10.45 Deploy Cert Manager with Let’s Encrypt

Use these commands to manage the Cert Manager with Let’s Encrypt SSL support within Kubernetes. By default, the
cert manager is deployed only in prod mode. If you run it in production mode, then it will install real, valid x509
certificates from Let’s Encrypt into the nginx-ingress automatically.

10.45.1 Start with Let’s Encrypt x509 SSL Certificates

Start the cert manager in prod mode to enable Let’s Encrypt TLS Encryption with the command:

./start.sh prod

Or manually with the command:

./cert-manager/run.sh prod

If you have splunk you can just add it to the arguments:

./start.sh splunk prod

10.45.2 View Logs

When using the production mode, make sure to view the logs to ensure you are not being blocked due to rate limiting:

10.45. Deploy Cert Manager with Let’s Encrypt 117

https://github.com/jetstack/cert-manager
https://letsencrypt.org/

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

./cert-manager/logs.sh

10.46 Stop the Cert Manager

If you notice things are not working correctly, you can quickly prevent yourself from getting blocked by stopping the
cert manager with the command:

./cert-manager/_uninstall.sh

Note: If you get blocked due to rate-limits it will show up in the cert-manager logs like:

I0731 07:53:43.313709 1 sync.go:273] Error issuing certificate for default/api.
→˓antinex.com-tls: error getting certificate from acme server: acme:
→˓urn:ietf:params:acme:error:rateLimited: Error finalizing order :: too many
→˓certificates already issued for exact set of domains: api.antinex.com: see https://
→˓letsencrypt.org/docs/rate-limits/
E0731 07:53:43.313738 1 sync.go:182] [default/api.antinex.com-tls] Error
→˓getting certificate 'api.antinex.com-tls': secret "api.antinex.com-tls" not found

10.46.1 Debugging

To reduce debugging issues, the cert manager ClusterIssuer objects use the same name for staging and production
mode. This is nice because you do not have to update all the annotations to deploy on production vs staging:

The cert manager starts and defines the issuer name for both production and staging as:

--set ingressShim.defaultIssuerName=letsencrypt-issuer

Make sure to set any nginx ingress annotations that need Let’s Encrypt SSL encryption to these values:

annotations:
kubernetes.io/tls-acme: "true"
kubernetes.io/ingress.class: "nginx"
certmanager.k8s.io/cluster-issuer: "letsencrypt-issuer"

10.47 Troubleshooting

10.48 Customize Minio and How to Troubleshoot

10.48.1 Change the Minio Access and Secret Keys

1. Change the secrets file: minio/secrets/default_access_keys.yml

Change the access_key and secret_key values after generating the new base64 string values for the
secrets file:

118 Chapter 10. API Reference

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

echo -n "NewAccessKey" | base64
TmV3QWNjZXNzS2V5
now you can replace the access_key's value in the secrets file with the string:
→˓TmV3QWNjZXNzS2V5

echo -n "NewSecretKey" | base64
TmV3U2VjcmV0S2V5
now you can replace the secret_key's value in the secrets file with the string:
→˓TmV3QWNjZXNzS2V5

2. Deploy the secrets file

kubectl apply -f ./minio/secrets/default_access_keys.yml

3. Restart the Minio Pod

kubectl delete pod -l app=minio

If you have changed the default access and secret keys, then you will need to export the following environment
variables as needed to make sure the ./minio/run_s3_test.py test script works:

export S3_ACCESS_KEY=<minio access key: trexaccesskey - default>
export S3_SECRET_KEY=<minio secret key: trex123321 - default>
export S3_REGION_NAME=<minio region name: us-east-1 - default>
export S3_ADDRESS=<minio service endpoint: external address found with the script ./
→˓minio/get-s3-endpoint.sh and the internal cluster uses the service: minio-
→˓service:9000>
examples of setting up a minio env files are in: ./minio/envs

10.48.2 View the Minio Dashboard

Login with:

• access key: trexaccesskey

• secret key: trex123321

https://minio.example.com

10.48.3 Get S3 Internal Endpoint

If you want to use the Minio S3 service within the cluster please use the endpoint:

minio-service:9000

or source the internal environment file:

source ./minio/envs/int.env

10.48.4 Get S3 External Endpoint

If you want to use the Minio S3 service from outside the cluser please use the endpoint provided by the script:

10.48. Customize Minio and How to Troubleshoot 119

https://minio.example.com

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

./minio/get-s3-endpoint.sh
which for this documentation was the minio service's Endpoints:
10.244.0.103:9000

or source the external environment file:

source ./minio/envs/ext.env

10.48.5 Debugging Steps

1. Load the Minio S3 external environment variables:

source ./minio/envs/ext.env

2. Run the S3 Verification test script

./minio/run_s3_test.py

3. Confirm Verification Keys are showing up in this Minio S3 bucket

https://minio.example.com/minio/s3-verification-tests/

If not please use the describe tools in ./minio/describe-*.sh to grab the logs and please file a GitHub
issue

10.48.6 Describe Pod

./minio/describe-service.sh

10.48.7 Describe Service

./minio/describe-service.sh

10.48.8 Describe Ingress

./minio/describe-ingress.sh

10.48.9 Uninstall Minio

./minio/_uninstall.sh

10.49 Ceph Troubeshooting

Please refer to the Rook Common Issues for the latest updates on how to use your Rook Ceph cluster.

120 Chapter 10. API Reference

https://minio.example.com/minio/s3-verification-tests/
https://github.com/jay-johnson/deploy-to-kubernetes/issues
https://github.com/jay-johnson/deploy-to-kubernetes/issues
https://github.com/rook/rook/blob/master/Documentation/common-issues.md#common-issues

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

Note: By default Ceph is not hosting the S3 solution unless cephs3 is passed in as an argument to
deploy-resource.sh.

There are included troubleshooting tools in the ./rook directory with an overview of each below:

10.49.1 Validate Ceph System Pods are Running

./rook/view-system-pods.sh

Getting the Rook Ceph System Pods:
kubectl -n rook-ceph-system get pod
NAME READY STATUS RESTARTS AGE
rook-ceph-agent-g9vzm 1/1 Running 0 7m
rook-ceph-operator-78d498c68c-tbsdf 1/1 Running 0 7m
rook-discover-h9wj9 1/1 Running 0 7m

10.49.2 Validate Ceph Pods are Running

./rook/view-ceph-pods.sh

Getting the Rook Ceph Pods:
kubectl -n rook-ceph get pod
NAME READY STATUS RESTARTS AGE
rook-ceph-mgr-a-9c44495df-7jksz 1/1 Running 0 6m
rook-ceph-mon0-rxxsl 1/1 Running 0 6m
rook-ceph-mon1-gqblg 1/1 Running 0 6m
rook-ceph-mon2-7xfsq 1/1 Running 0 6m
rook-ceph-osd-id-0-7d4d4c8794-kgr2d 1/1 Running 0 6m
rook-ceph-osd-prepare-dev-kmsn9 0/1 Completed 0 6m
rook-ceph-tools 1/1 Running 0 6m

10.49.3 Validate Persistent Volumes are Bound

kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY
→˓STATUS CLAIM STORAGECLASS REASON AGE
pvc-03e6e4ef-9df8-11e8-8047-0800270864a8 1Gi RWO Delete
→˓Bound default/certs-pv-claim rook-ceph-block 46m
pvc-0415de24-9df8-11e8-8047-0800270864a8 1Gi RWO Delete
→˓Bound default/configs-pv-claim rook-ceph-block 46m
pvc-0441307f-9df8-11e8-8047-0800270864a8 1Gi RWO Delete
→˓Bound default/datascience-pv-claim rook-ceph-block 46m
pvc-0468ef73-9df8-11e8-8047-0800270864a8 1Gi RWO Delete
→˓Bound default/frontendshared-pv-claim rook-ceph-block 46m
pvc-04888222-9df8-11e8-8047-0800270864a8 1Gi RWO Delete
→˓Bound default/staticfiles-pv-claim rook-ceph-block 46m
pvc-1c3e359d-9df8-11e8-8047-0800270864a8 10Gi RWO Delete
→˓Bound default/minio-pv-claim rook-ceph-block 46m

10.49. Ceph Troubeshooting 121

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.49.4 Validate Persistent Volume Claims are Bound

kubectl get pvc
NAME STATUS VOLUME
→˓CAPACITY ACCESS MODES STORAGECLASS AGE
certs-pv-claim Bound pvc-03e6e4ef-9df8-11e8-8047-0800270864a8 1Gi
→˓ RWO rook-ceph-block 47m
configs-pv-claim Bound pvc-0415de24-9df8-11e8-8047-0800270864a8 1Gi
→˓ RWO rook-ceph-block 47m
datascience-pv-claim Bound pvc-0441307f-9df8-11e8-8047-0800270864a8 1Gi
→˓ RWO rook-ceph-block 47m
frontendshared-pv-claim Bound pvc-0468ef73-9df8-11e8-8047-0800270864a8 1Gi
→˓ RWO rook-ceph-block 47m
minio-pv-claim Bound pvc-1c3e359d-9df8-11e8-8047-0800270864a8 10Gi
→˓ RWO rook-ceph-block 46m

10.49.5 Create a Persistent Volume Claim

Going forward, Ceph will automatically create a persistent volume if one is not available for binding to an available
Persistent Volume Claim. To create a new persistent volume, just create a claim and verify the Rook Ceph cluster
created the persistent volume and both are bound to each other.

kubectl apply -f pvs/pv-staticfiles-ceph.yml

10.49.6 Verify the Persistent Volume is Bound

kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY
→˓STATUS CLAIM STORAGECLASS REASON AGE
pvc-77afbc7a-9ade-11e8-b293-0800270864a8 20Gi RWO Delete
→˓Bound default/staticfiles-pv-claim rook-ceph-block 2s

10.49.7 Verify the Persistent Volume Claim is Bound

kubectl get pvc
NAME STATUS VOLUME CAPACITY
→˓ ACCESS MODES STORAGECLASS AGE
staticfiles-pv-claim Bound pvc-77afbc7a-9ade-11e8-b293-0800270864a8 20Gi
→˓ RWO rook-ceph-block 11s

10.49.8 Describe Persistent Volumes

kubectl describe pv pvc-c88fc37b-9adf-11e8-9fae-0800270864a8
Name: pvc-c88fc37b-9adf-11e8-9fae-0800270864a8
Labels: <none>
Annotations: pv.kubernetes.io/provisioned-by=ceph.rook.io/block
Finalizers: [kubernetes.io/pv-protection]
StorageClass: rook-ceph-block
Status: Bound

(continues on next page)

122 Chapter 10. API Reference

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

Claim: default/certs-pv-claim
Reclaim Policy: Delete
Access Modes: RWO
Capacity: 20Gi
Node Affinity: <none>
Message:
Source:

Type: FlexVolume (a generic volume resource that is provisioned/attached
→˓using an exec based plugin)

Driver: ceph.rook.io/rook-ceph-system
FSType: xfs
SecretRef: <nil>
ReadOnly: false
Options: map[clusterNamespace:rook-ceph image:pvc-c88fc37b-9adf-11e8-9fae-

→˓0800270864a8 pool:replicapool storageClass:rook-ceph-block]
Events: <none>

10.49.9 Show Ceph Cluster Status

./rook/show-ceph-status.sh

--
Getting the Rook Ceph Status with Toolbox:
kubectl -n rook-ceph exec -it rook-ceph-tools ceph status
cluster:

id: 7de1988c-03ea-41f3-9930-0bde39540552
health: HEALTH_OK

services:
mon: 3 daemons, quorum rook-ceph-mon2,rook-ceph-mon0,rook-ceph-mon1
mgr: a(active)
osd: 1 osds: 1 up, 1 in

data:
pools: 1 pools, 100 pgs
objects: 12 objects, 99 bytes
usage: 35443 MB used, 54756 MB / 90199 MB avail
pgs: 100 active+clean

10.49.10 Show Ceph OSD Status

./rook/show-ceph-osd-status.sh

--
Getting the Rook Ceph OSD Status with Toolbox:
kubectl -n rook-ceph exec -it rook-ceph-tools ceph osd status
+----+-------------------------------------+-------+-------+--------+---------+-------
→˓-+---------+-----------+
| id | host | used | avail | wr ops | wr data | rd
→˓ops | rd data | state |
+----+-------------------------------------+-------+-------+--------+---------+-------
→˓-+---------+-----------+
| 0 | rook-ceph-osd-id-0-7d4d4c8794-kgr2d | 34.6G | 53.4G | 0 | 0 | 0
→˓ | 0 | exists,up | (continues on next page)

10.49. Ceph Troubeshooting 123

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

+----+-------------------------------------+-------+-------+--------+---------+-------
→˓-+---------+-----------+

10.49.11 Show Ceph Free Space

./rook/show-ceph-df.sh

--
Getting the Rook Ceph df with Toolbox:
kubectl -n rook-ceph exec -it rook-ceph-tools ceph df
GLOBAL:

SIZE AVAIL RAW USED %RAW USED
90199M 54756M 35443M 39.29

POOLS:
NAME ID USED %USED MAX AVAIL OBJECTS
replicapool 1 99 0 50246M 12

10.49.12 Show Ceph RDOS Free Space

./rook/show-ceph-rados-df.sh

--
Getting the Rook Ceph rados df with Toolbox:
kubectl -n rook-ceph exec -it rook-ceph-tools rados df
POOL_NAME USED OBJECTS CLONES COPIES MISSING_ON_PRIMARY UNFOUND DEGRADED RD_OPS RD
→˓ WR_OPS WR
replicapool 99 12 0 12 0 0 0 484
→˓381k 17 7168

total_objects 12
total_used 35443M
total_avail 54756M
total_space 90199M

10.49.13 Out of IP Addresses

Flannel can exhaust all available ip addresses in the CIDR network range. When this happens please run the following
command to clean up the local cni network files:

./tools/reset-flannel-cni-networks.sh

10.50 AntiNex Stack Status

Here are the AntiNex repositories, documentation and build reports:

124 Chapter 10. API Reference

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

Component Build Docs Link Docs Build
REST API Docs
Core Worker Docs
Network Pipeline Docs
AI Utils Docs
Client Docs

10.51 Reset Cluster

Here is a video showing how to reset the local Kubernetes cluster.

Please be careful as these commands will shutdown all containers and reset the Kubernetes cluster.

Run as root:

sudo su
kubeadm reset -f
./prepare.sh

Or use the file:

sudo su
./tools/cluster-reset.sh

Or the full reset and deploy once ready:

sudo su
cert_env=dev; ./tools/reset-flannel-cni-networks.sh; ./tools/cluster-reset.sh ; ./
→˓user-install-kubeconfig.sh ; sleep 30; ./deploy-resources.sh splunk ${cert_env}
exit
as your user
./user-install-kubeconfig.sh
depending on testing vs prod:
./start.sh splunk
./start.sh splunk prod

10.52 Development

Right now, the python virtual environment is only used to bring in ansible for running playbooks, but it will be used
in the future with the kubernetes python client as I start using it more and more.

virtualenv -p python3 /opt/venv && source /opt/venv/bin/activate && pip install -e .

10.53 Testing

py.test

or

10.51. Reset Cluster 125

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt
https://travis-ci.org/jay-johnson/train-ai-with-django-swagger-jwt.svg
http://antinex.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex/badge/?version=latest
https://github.com/jay-johnson/antinex-core
https://travis-ci.org/jay-johnson/antinex-core.svg
http://antinex-core-worker.readthedocs.io/en/latest/
http://antinex-core-worker.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/network-pipeline
https://travis-ci.org/jay-johnson/network-pipeline.svg
http://antinex-network-pipeline.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex-network-pipeline/badge/?version=latest
https://github.com/jay-johnson/antinex-utils
https://travis-ci.org/jay-johnson/antinex-utils.svg
http://antinex-ai-utilities.readthedocs.io/en/latest/
http://antinex-ai-utilities.readthedocs.io/en/latest/?badge=latest
https://github.com/jay-johnson/antinex-client
https://travis-ci.org/jay-johnson/antinex-client.svg
http://antinex-client.readthedocs.io/en/latest/
https://readthedocs.org/projects/antinex-client/badge/?version=latest

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

python setup.py test

10.54 License

Apache 2.0 - Please refer to the LICENSE for more details

10.55 AntiNex on OpenShift Container Platform

Here is a guide for running the AntiNex stack on OpenShift Container Platform. This was tested on version 3.9.

126 Chapter 10. API Reference

https://github.com/jay-johnson/deploy-to-kubernetes/blob/master/LICENSE

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.55. AntiNex on OpenShift Container Platform 127

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

This will deploy the following containers to OpenShift Container Platform:

1. API Server - Django REST Framework with JWT and Swagger

2. API Workers - Celery Workers to support the Django REST API

3. Core Worker - AntiNex AI Core Celery Worker

4. Jupyter - Includes ready-to-use AntiNex IPython Notebooks

5. Pipeline - AntiNex Network Pipeline Celery Worker

6. Posgres 10.4 - Crunchy Data Single Primary

7. Redis 3.2

8. pgAdmin4

10.55.1 Getting Started

1. Clone

This guide assumes the repository is cloned to the directory:

/opt/antinex/api

mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/train-ai-with-django-swagger-jwt.git /
→˓opt/antinex/api

2. Setting up Database Tools

For preparing Ubuntu 18 to manage the Crunchy containers:

sudo apt install golang-go
mkdir -p -m 777 /opt/antinex
on ubuntu 18.04:
export GOPATH=$HOME/go
export PATH=$PATH:$GOROOT/bin:$GOPATH/bin
go get github.com/blang/expenv

3. Enable Admin Rights for Users

On the OpenShift Container Platform, add cluster-admin role to all users that need to deploy AntiNex on
OCP

[root@ocp39 ~]# oc adm policy add-cluster-role-to-user cluster-admin trex
cluster role "cluster-admin" added: "trex"
[root@ocp39 ~]#

4. Persistent Volumes

For Postgres and Redis to use a persistent volume, the user must be a cluster-admin.

5. Resources

Please make sure to give the hosting vm(s) enough memory to run the stack. If you are using OpenShift
Container Platform please use at least 2 CPU cores and 8 GB of RAM.

6. Set up /etc/hosts

OpenShift Container Platform is running on a vm with an ip: 192.168.0.35 and with these application fqdns in
/etc/hosts.

128 Chapter 10. API Reference

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt
https://hub.docker.com/r/jayjohnson/ai-core/
https://github.com/jay-johnson/antinex-core
https://github.com/jay-johnson/antinex-core/tree/master/docker/notebooks
https://github.com/jay-johnson/network-pipeline
https://hub.docker.com/r/crunchydata/crunchy-postgres/
https://hub.docker.com/r/bitnami/redis/
https://hub.docker.com/r/crunchydata/crunchy-pgadmin4/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-rpm-vs-containerized
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-rpm-vs-containerized

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

192.168.0.35 ocp39.homelab.com api-antinex.apps.homelab.com jupyter-antinex.
→˓apps.homelab.com postgres-antinex.apps.homelab.com redis-antinex.apps.homelab.
→˓com primary-antinex.apps.homelab.com pgadmin4-http-antinex.apps.homelab.com

10.55.2 Login to OpenShift Container Platform

Here’s an example of logging into OpenShift Container Platform

oc login https://ocp39.homelab.com:8443

10.55.3 Deploy

Deploy the containers to OpenShift Container Platform

Run Deployment Command

./deploy.sh

If you have Splunk set up you can deploy the splunk deployment configs with the command:

./deploy.sh splunkenterprise

10.55.4 Check the AntiNex Stack

You can view the antinex project’s pod on the OpenShift web console:

OpenShift Container Platform:

https://ocp39.homelab.com:8443/console/project/antinex/browse/pods

You can also use the command line:

oc status -v

oc status -v
In project antinex on server https://ocp39.homelab.com:8443

http://api-antinex.apps.homelab.com to pod port 8010 (svc/api)
deployment/api deploys jayjohnson/antinex-api:latest

deployment #1 running for 7 hours - 1 pod

http://jupyter-antinex.apps.homelab.com to pod port 8888 (svc/jupyter)
deployment/jupyter deploys jayjohnson/antinex-jupyter:latest

deployment #1 running for 7 hours - 1 pod

http://pgadmin4-http-antinex.apps.homelab.com to pod port pgadmin4-http (svc/pgadmin4-
→˓http)
pod/pgadmin4-http runs crunchydata/crunchy-pgadmin4:centos7-10.3-1.8.2

http://primary-antinex.apps.homelab.com to pod port 5432 (svc/primary)
pod/primary runs crunchydata/crunchy-postgres:centos7-10.4-1.8.3

http://redis-antinex.apps.homelab.com to pod port 6379-tcp (svc/redis)

(continues on next page)

10.55. AntiNex on OpenShift Container Platform 129

https://ocp39.homelab.com:8443/console/project/antinex/browse/pods

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

dc/redis deploys istag/redis:latest
deployment #1 deployed 7 hours ago - 1 pod

deployment/core deploys jayjohnson/antinex-core:latest
deployment #1 running for 7 hours - 1 pod

deployment/pipeline deploys jayjohnson/antinex-pipeline:latest
deployment #1 running for 7 hours - 1 pod

deployment/worker deploys jayjohnson/antinex-worker:latest
deployment #1 running for 7 hours - 1 pod

Info:

* pod/pgadmin4-http has no liveness probe to verify pods are still running.
try: oc set probe pod/pgadmin4-http --liveness ...

* pod/primary has no liveness probe to verify pods are still running.
try: oc set probe pod/primary --liveness ...

* deployment/api has no liveness probe to verify pods are still running.
try: oc set probe deployment/api --liveness ...

* deployment/core has no liveness probe to verify pods are still running.
try: oc set probe deployment/core --liveness ...

* deployment/jupyter has no liveness probe to verify pods are still running.
try: oc set probe deployment/jupyter --liveness ...

* deployment/pipeline has no liveness probe to verify pods are still running.
try: oc set probe deployment/pipeline --liveness ...

* deployment/worker has no liveness probe to verify pods are still running.
try: oc set probe deployment/worker --liveness ...

* dc/redis has no readiness probe to verify pods are ready to accept traffic or
→˓ensure deployment is successful.

try: oc set probe dc/redis --readiness ...

* dc/redis has no liveness probe to verify pods are still running.
try: oc set probe dc/redis --liveness ...

View details with 'oc describe <resource>/<name>' or list everything with 'oc get all
→˓'.

10.55.5 Migrations

Migrations have to run inside an api container. Below is a recording of running the initial migration.

OpenShift Container Platform

The command from the video is included in the openshift directory, and you can run the command to show how to run
a migration. Once the command finishes, you can copy and paste the output into your shell to quickly run a migration:

./show-migrate-cmds.sh

Run a migration with:
oc rsh api-5958c5d995-jjxkt
/bin/bash
. /opt/venv/bin/activate && cd /opt/antinex/api && source /opt/antinex/api/envs/
→˓openshift-no-hostnames.env && export POSTGRES_HOST=primary && export POSTGRES_
→˓DB=webapp && export POSTGRES_USER=antinex && export POSTGRES_PASSWORD=antinex && ./
→˓run-migrations.sh
exit
exit

130 Chapter 10. API Reference

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.55.6 Creating a User

Here’s how to create the default user trex

OpenShift Container Platform

1. Create a User from the command line

The commands to create the default user trex are:

source users/user_1.sh
./create-user.sh

2. Create a User using Swagger

You can create users using swagger the API’s swagger url (here’s the default one during creation of this guide):

http://api-antinex.apps.homelab.com/swagger/

3. Create a User from a User file

You can create your own user file’s like: users/user_1.sh that have the supported environment keys in a file
before running. You can also just exported them in the current shell session (but having a resource file will be
required in the future):

Here’s the steps to build your own:

(a) Find the API Service

$ oc status | grep svc/api
http://api-antinex.apps.homelab.com to pod port 8010 (svc/api)

(b) Confirm it is Discovered by the AntiNex Get API URL Tool

$ /opt/antinex/api/openshift/get-api-url.sh
http://api-antinex.apps.homelab.com

(c) Set the Account Details

export API_USER="trex"
export API_PASSWORD="123321"
export API_EMAIL="bugs@antinex.com"
export API_FIRSTNAME="Guest"
export API_LASTNAME="Guest"
export API_URL=http://api-antinex.apps.homelab.com
export API_VERBOSE="true"
export API_DEBUG="false"

(d) Create the user

./create-user.sh <optional path to user file>

(e) Get a JWT Token for the New User

./get-token.sh

Train a Deep Neural Network

Here’s how to train a deep neural network using the AntiNex Client and the Django AntiNex dataset:

10.55. AntiNex on OpenShift Container Platform 131

http://api-antinex.apps.homelab.com/swagger/

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.55.7 Commands for Training a Deep Neural Network on OpenShift with AntiNex

1. Install the AntiNex Client

pip install antinex-client

2. Source User File

source ./users/user_1.sh

3. Train the Deep Neural Network with the Django Dataset

ai_train_dnn.py -f ../tests/scaler-full-django-antinex-simple.json -s

4. Get the Job

The job from the video was MLJob.id: 3

ai_get_job.py -i 3

5. Get the Job Result

The job’s result from the video was MLJobResult.id: 3

ai_get_results.py -i 3

10.55.8 Drop and Restore Database with the Latest Migration

You can drop the database and restore it to the latest migration with this command. Copy and paste the output to run
the commands quickly. Make sure to get the second batch or using the ./show-migrate-cmds.sh if you need
to migrate at some point in the future.

./tools/drop-database.sh

10.55.9 Debugging

Here is how to debug AntiNex on OpenShift. This is a work in progress so please feel free to reach out if you see a
problem that is not documented here.

10.55.10 Drill Down into the Splunk Logs

If you deployed AntiNex with Splunk, then can use the Spylunking - sp command line tool or use the Splunk web app:
http://splunkenterprise:8000/en-US/app/search/search

10.55.11 Find API Logs in Splunk

Find the API’s logs by using the deployment config environment variables with the command:

sp -q 'index="antinex" AND name="api" | head 5 | reverse'
creating client user=trex address=splunkenterprise:8089
connecting trex@splunkenterprise:8089
2018-06-26 22:07:08,971 ml-sz - INFO - MLJob get user_id=2 pk=4

(continues on next page)

132 Chapter 10. API Reference

https://github.com/jay-johnson/spylunking#pull-logs-with-a-query-on-the-command-line-1
http://splunkenterprise:8000/en-US/app/search/search
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/4d3e90271ad7c0996685576e09cdfddc2299580d/openshift/api/log_to_splunk_deployment.yaml#L106-L111

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

2018-06-26 22:07:08,976 ml-sz - INFO - MLJob get res={'status': 0, 'code': 200, 'er
2018-06-26 22:07:09,011 ml - INFO - mljob_result get
2018-06-26 22:07:09,012 ml-sz - INFO - MLJobResults get user_id=2 pk=4
2018-06-26 22:07:11,458 ml-sz - INFO - MLJobResults get res={'status': 0, 'code': 200,
→˓ 'er
done

10.55.12 Find Worker Logs in Splunk

Find the Worker’s logs by using the deployment config environment variables with the command:

sp -q 'index="antinex" AND name="worker" | head 5 | reverse'
creating client user=trex address=splunkenterprise:8089
connecting trex@splunkenterprise:8089
2018-06-26 22:07:01,990 ml_prc_results - INFO - APIRES updating job_id=4 result_id=4
2018-06-26 22:07:01,991 ml_prc_results - INFO - saving job_id=4
2018-06-26 22:07:02,003 ml_prc_results - INFO - saving result_id=4
2018-06-26 22:07:07,898 ml_prc_results - INFO - APIRES done
2018-06-26 22:07:07,899 celery.app.trace - INFO - Task drf_network_pipeline.pipeline.
→˓tasks.task_ml_process_results[5499207f-4faa-430e-89ec-c136829da902] succeeded in 6.
→˓908605030999752s: None
done

10.55.13 Find Core Logs in Splunk

Find the Core’s logs by using the deployment config environment variables with the command:

sp -q 'index="antinex" AND name="core" | head 5 | reverse'
creating client user=trex address=splunkenterprise:8089
connecting trex@splunkenterprise:8089
2018-06-26 22:06:55,834 send_results - INFO - sending response queue=drf_network_
→˓pipeline.pipeline.tasks.task_ml_process_results task=drf_network_pipeline.pipeline.
→˓tasks.task_ml_process_results retries=100000
2018-06-26 22:06:57,530 send_results - INFO - task.id=5499207f-4faa-430e-89ec-
→˓c136829da902
2018-06-26 22:06:57,530 send_results - INFO - send_results_to_broker - done
2018-06-26 22:06:57,530 processor - INFO - CORERES Full-Django-AntiNex-Simple-Scaler-
→˓DNN publishing results success=True
2018-06-26 22:06:57,531 processor - INFO - Full-Django-AntiNex-Simple-Scaler-DNN -
→˓model=full-django-antinex-simple-scaler-dnn finished processing
done

10.55.14 Find Core AI Utilities Logs in Splunk

Find the Core’s AntiNex Utility logs with the command:

sp -q 'index="antinex" AND name="core" AND make_predict | head 5 | reverse'
creating client user=trex address=splunkenterprise:8089
connecting trex@splunkenterprise:8089
2018-06-26 22:06:42,236 make_predict - INFO - Full-Django-AntiNex-Simple-Scaler-DNN -
→˓ml_type=classification scores=[0.00016556291390729116, 0.9982615894039735]
→˓accuracy=99.82615894039735 merging samples=30200 with predictions=30200 labels={'-1
→˓': 'not_attack', '0': 'not_attack', '1': 'attack'} (continues on next page)

10.55. AntiNex on OpenShift Container Platform 133

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/4d3e90271ad7c0996685576e09cdfddc2299580d/openshift/worker/log_to_splunk_deployment.yaml#L102-L107
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt/blob/4d3e90271ad7c0996685576e09cdfddc2299580d/openshift/core/log_to_splunk_deployment.yaml#L58-L63
https://github.com/jay-johnson/antinex-utils

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

(continued from previous page)

2018-06-26 22:06:48,017 make_predict - INFO - Full-Django-AntiNex-Simple-Scaler-DNN -
→˓packaging classification predictions=30200 rows=30200
2018-06-26 22:06:48,017 make_predict - INFO - Full-Django-AntiNex-Simple-Scaler-DNN -
→˓no image_file
2018-06-26 22:06:48,017 make_predict - INFO - Full-Django-AntiNex-Simple-Scaler-DNN -
→˓created image_file=None
2018-06-26 22:06:48,018 make_predict - INFO - Full-Django-AntiNex-Simple-Scaler-DNN -
→˓predictions done
done

10.55.15 Find Worker AI Utilities Logs in Splunk

Find the Worker’s AntiNex Utility logs with the command:

sp -q 'index="antinex" AND name="worker" AND make_predict | head 5 | reverse'
creating client user=trex address=splunkenterprise:8089
connecting trex@splunkenterprise:8089
2018-06-26 21:45:04,351 make_predict - INFO - job_3_result_3 - merge_df=1651
2018-06-26 21:45:04,351 make_predict - INFO - job_3_result_3 - packaging regression
→˓predictions=1651 rows=18
2018-06-26 21:45:04,352 make_predict - INFO - job_3_result_3 - no image_file
2018-06-26 21:45:04,352 make_predict - INFO - job_3_result_3 - created image_file=None
2018-06-26 21:45:04,352 make_predict - INFO - job_3_result_3 - predictions done
done

10.55.16 Tail API Logs

oc logs -f deployment/api

or

./logs-api.sh

10.55.17 Tail Worker Logs

oc logs -f deployment/worker

or

./logs-worker.sh

10.55.18 Tail AI Core Logs

oc logs -f deployment/core

or

./logs-core.sh

134 Chapter 10. API Reference

https://github.com/jay-johnson/antinex-utils

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.55.19 Tail Pipeline Logs

oc logs -f deployment/pipeline

or

./logs-pipeline.sh

10.55.20 Change the Entrypoint

To keep the containers running just add something like: tail -f <some file> to keep the container running for
debugging issues.

I use:

&& tail -f /var/log/antinex/api/api.log

10.55.21 SSH into API Container

oc rsh deployment/api /bin/bash

10.55.22 SSH into API Worker Container

./ssh-worker.sh

or

oc rsh deployment/worker /bin/bash

10.55.23 SSH into AI Core Container

oc rsh deployment/core /bin/bash

10.55.24 Stop All Containers

Stop all the containers without changing the persistent volumes with the command:

./stop-all.sh

10.55.25 Delete Everything

Remove, delete and clean up everything in the AntiNex project with the command:

./remove-all.sh

10.55. AntiNex on OpenShift Container Platform 135

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

Troubleshooting

10.55.26 Permission Errors for Postgres or Redis

If you see an error about permission denied in the logs for the primary postgres server or redis that mentions one of
these directories:

/pgdata
/exports/redis-antinex

Then run this command to ssh over to the OCP vm and fix the volume mount directories. Please note, this tool assumes
you have copied over the ssh keys and are using NFS mounts for OCP volumes.

./tools/delete-and-fix-volumes.sh

10.56 Source Code - ML Pipeline

These are the methods for developing with the current ML Pipeline app within the Django Rest Framework.

10.56.1 Constants

Constants for the ML

10.56.2 Building a Response Dictionary

This builds a dictionary that is published to the AntiNex Core within the MLJob’s prediction manifest. This dictionary
contains how to send the results back to the core. This would allow for an environment to run many Rest APIs and
reuse the same core workers.

drf_network_pipeline.pipeline.build_worker_result_node.build_worker_result_node(req=None)

Parameters req – incoming request dictionary - not used right now

10.56.3 Creating ML Job Stub Records for Tracking Purposes

Creates initial MLJob and MLJobResult record stub in the database

drf_network_pipeline.pipeline.create_ml_job_record.create_ml_job_record(req_data=None)

Parameters req_data – dictionary to build the MLJob and MLJobResult objects

10.56.4 Creating New Training Datasets

Creates an initial MLPrepare record stub in the database

drf_network_pipeline.pipeline.create_ml_prepare_record.create_ml_prepare_record(req_data=None)

Parameters req_data – dictionary to build the MLPrepare object

136 Chapter 10. API Reference

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.56.5 Process AntiNex Core Worker Results

Fills in the MLJob and MLJobResult records with the JSON response from the AntiNex Core.

drf_network_pipeline.pipeline.process_worker_results.handle_worker_results_message(body=None)

Parameters body – contents from the results

drf_network_pipeline.pipeline.process_worker_results.process_worker_results(res_node=None)

Parameters res_node – incoming request dictionary - not used right now

10.56.6 Celery Tasks

Celery tasks that are handled within the Django Rest API Worker when the environment variable CELERY_ENABLED
is set to 1

(task)drf_network_pipeline.pipeline.tasks.task_ml_job(req_node=None)

Parameters

• self – parent task object for bind=True

• req_node – job utils dictionary for passing a dictionary

(task)drf_network_pipeline.pipeline.tasks.task_ml_prepare(req_node=None)

Parameters

• self – parent task object for bind=True

• req_node – job utils dictionary for passing a dictionary

(task)drf_network_pipeline.pipeline.tasks.task_ml_process_results(res_node=None)
Core workers send results back to the REST API worker here

Parameters

• self – parent task object for bind=True

• res_node – results dictionary from the core

(task)drf_network_pipeline.pipeline.tasks.task_publish_to_core(publish_node=None)

Parameters

• self – parent task object for bind=True

• publish_node – dictionary to send to the AntiNex Core Worker

10.56.7 Utility Methods

Utility methods

drf_network_pipeline.pipeline.utils.convert_to_date(value=None, format=’%Y-%m-
%d %H:%M:%S’)

param: value - datetime object param: format - string format

10.56. Source Code - ML Pipeline 137

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.57 Source Code - Job Helpers

These are the helper methods for abstracting celery calls from the Django REST Framework Serializers. These are
optional for most users, I just find them helpful because the serializers all examine a common dictionary structure
instead of custom ones all over the code. The response structure is:

task_response_node = {
"status": status,
"err": err,
"task_name": task_name,
"data": data,
"celery_enabled": celery_enabled,
"use_cache": use_cache,
"cache_key": cache_key

}

1. status will be a const value from the drf_network_pipeline.pipeline.consts

Response Status Codes

SUCCESS = 0
FAILED = 1
ERR = 2
EX = 3
NOTRUN = 4
INVALID = 5
NOTDONE = 6

2. err will be an empty string on SUCCESS and not-empty if there was a problem

3. data is the result from the Celery worker (if it was used instead of python manage.py runserver 0.0.0.0:8010)

4. use_cache is a flag meaning the results ere also cached in the cache_key for django-cacheops to use (this is
not supported yet)

5. task_name is a human readable task label for debugging in the logs

10.57.1 Build Task Request

drf_network_pipeline.job_utils.build_task_request.build_task_request(status=4,
err=’not-
set’,
task_name=”,
data=None,
job_id=None,
cel-
ery_enabled=False,
use_cache=False,
cache_record=False,
cache_key=None)

build_task_node

Builds a common request dictionary for all Celery tasks being wrapped with the utils framework

Parameters

• status – task return status code

138 Chapter 10. API Reference

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

• err – task error message for debugging

• task_name – task label for debugging

• data – task return data

• job_id – task job id

• celery_enabled – control flag for testing celery tasks

• use_cache – use the cached record if available

• cache_record – cache the result in redis after done

• cache_key – cache the result in this redis key

10.57.2 Build Task Response

drf_network_pipeline.job_utils.build_task_response.build_task_response(status=4,
err=’not-
set’,
task_name=”,
data=None,
cel-
ery_enabled=False,
use_cache=False,
cache_key=None)

Builds a common response dictionary for all Celery tasks being wrapped with the utils framework

Parameters

• status – task return status code

• err – task error message for debugging

• task_name – task label for debugging

• data – task return data

• celery_enabled – control flag for testing celery tasks

• use_cache – use the cached record if available

• cache_key – cache the result in this redis key

10.57.3 Handle Task Method

drf_network_pipeline.job_utils.handle_task_method.handle_task_method(req_node=None,
task_method=None,
get_result=False,
de-
lay_timeout=1.0)

Wraps task invocation for easier debugging with a standardized dictionary status, error, data response

Parameters

• req_node – request tracking data

• task_method – task method to run

• get_result – get the result from task

• delay_timeout – timeout in seconds to wait

10.57. Source Code - Job Helpers 139

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.57.4 Run Task

drf_network_pipeline.job_utils.run_task.run_task(task_method=None,
task_name=’please-set-
name’, req_data=None,
get_result=False, de-
lay_timeout=1.0, use_cache=False,
cache_record=False,
cache_key=None)

Handles Celery sync/async task processing

Parameters

• task_method – requested method

• task_name – name of the task for logging

• req_data – requested data

• get_result – get the result from task

• delay_timeout – seconds to wait for the task to finish

• use_cache – use the cached record if available

• cache_record – cache the result in redis after done

• cache_key – cache the result in this redis key

10.58 Source Code - Django Rest Framework Serializers

10.58.1 User Serializers

These are the current User Serializers

class drf_network_pipeline.sz.user.UserSerializer(instance=None, data=<class
’rest_framework.fields.empty’>,
**kwargs)

User Serializer

create(request, validated_data)

Parameters validated_data – post dict

delete(request, pk)
Delete a User

Parameters

• request – http request

• pk – User.id

get(request, pk)
Get user

Parameters

• request – http request

• pk – User.id

lookup_user(user_id)

140 Chapter 10. API Reference

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

Parameters user_id – user id

update(request, validated_data, pk=None)
Update User

Parameters

• request – http request

• validated_data – dict of values

• pk – User.id

10.58.2 ML Serializers

These are the current ML Serializers

class drf_network_pipeline.sz.ml.MLPrepareSerializer(instance=None, data=<class
’rest_framework.fields.empty’>,
**kwargs)

AntiNex Prepare Dataset Serializer

create(request, validated_data)
Start a new Prepare Job

Parameters

• request – http request

• validated_data – post dictionary

delete(request, pk)
Delete an MLPrepare

Parameters

• request – http request

• pk – MLPrepare.id

get(request, pk)
Get MLPrepare record

Parameters

• request – http request

• pk – MLPrepare.id

update(request, validated_data, pk=None)
Update an MLPrepare

Parameters

• request – http request

• validated_data – dict of values

• pk – MLPrepare.id

class drf_network_pipeline.sz.ml.MLJobsSerializer(instance=None, data=<class
’rest_framework.fields.empty’>,
**kwargs)

AntiNex AI Job Serializer

10.58. Source Code - Django Rest Framework Serializers 141

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

create(request, validated_data)
Start a new MLJob

Parameters

• request – http request

• validated_data – post dictionary

delete(request, pk)
Delete an MLJob

Parameters

• request – http request

• pk – MLJob.id

get(request, pk)
Get MLJob or Get Recent ML Jobs for User (if pk=None)

Parameters

• request – http request

• pk – MLJob.id

update(request, validated_data, pk=None)
Update an MLJob

Parameters

• request – http request

• validated_data – dict of values

• pk – MLJob.id

class drf_network_pipeline.sz.ml.MLJobResultsSerializer(instance=None,
data=<class
’rest_framework.fields.empty’>,
**kwargs)

AntiNex AI Job Results Serializer

create(request, validated_data)
Create new MLJobResult

Parameters

• request – http request

• validated_data – post dictionary

delete(request, pk)
Delete an MLJobResult

Parameters

• request – http request

• pk – MLJobResult.id

get(request, pk)
Get MLResult record

Parameters

• request – http request

142 Chapter 10. API Reference

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

• pk – MLJobResult.id

update(request, validated_data, pk=None)
Update an MLJobResult

Parameters

• request – http request

• validated_data – dict of values

• pk – MLJobResult.id

10.59 Source Code - Database Models

10.59.1 AntiNex DB Models

Here are the MLJob, MLJobResult and MLPrepare classes.

class drf_network_pipeline.pipeline.models.MLJob(id, user, title, desc, ds_name,
algo_name, ml_type, status,
control_state, predict_feature,
predict_manifest, training_data,
pre_proc, post_proc, meta_data,
tracking_id, version, created, up-
dated, deleted)

exception DoesNotExist

exception MultipleObjectsReturned

class drf_network_pipeline.pipeline.models.MLJobResult(id, user, job, status,
test_size, csv_file, meta_file,
acc_data, error_data,
model_json, model_weights,
model_weights_file,
acc_image_file, predic-
tions_json, version, created,
updated, deleted)

exception DoesNotExist

exception MultipleObjectsReturned

class drf_network_pipeline.pipeline.models.MLPrepare(id, user, status, control_state,
title, desc, full_file, clean_file,
meta_suffix, output_dir, ds_dir,
ds_glob_path, pipeline_files,
post_proc, label_rules,
meta_data, tracking_id,
version, created, updated,
deleted)

exception DoesNotExist

exception MultipleObjectsReturned

10.59. Source Code - Database Models 143

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

10.59.2 User DB Model

class drf_network_pipeline.users.models.User(id, password, last_login, is_superuser,
username, first_name, last_name, email,
is_staff, is_active, date_joined)

exception DoesNotExist

exception MultipleObjectsReturned

10.60 Frequently Asked Questions

10.60.1 What AntiNex is Not and Disclaimers

There’s a lot of moving pieces in AI, and I wanted to be clear what is currently not supported:

1. Custom layers or custom Deep Neural Network models - only Keras Sequential neural networks, KerasRegres-
sor, KerasClassifier, Stratified Kfolds, cross validation scoring, Scalers, Add and Dropout are supported. PR’s
are always welcomed!

2. Able to tell what your applications are doing today that is good, non-attack traffic out of the box. AntiNex
requires recording how the network is being used in normal operation + identifying what you want to protect
(do you want tcp traffic only? or a combination of tcp + udp + arp?). It uses the captured traffic to build the
intial training dataset.

3. Exotic attacks - The network pipeline includes the Zed Attack Proxy (ZED) for OWASP dynamic security
analysis. This tool attacks using a fuzzing attack on web applications. ZED was used to generate the latest
attack datasets, and there is no guarantee the latest dnn’s will always be effective with attacks I have not seen
yet. Please share your findings and reach out if you know how to generate new, better attack simulations to help
us all. PR’s are always welcomed!

4. Image predictions and Convoluted Neural Networks - it’s only works on numeric datasets.

5. Recurrent Neural Networks - I plan on adding LTSM support into the antinex-utils, but the scores were already
good enough to release this first build.

6. Embedding Layers - I want to add payload deserialization to the packet processing with support for decrypting
traffic, but the dnn scores were good enough to skip this feature for now.

7. Adversarial Neural Networks - I plan on creating attack neural networks from the datasets to beat up the trained
ones, but this is a 2.0 feature at this point.

8. Saving models to disk is broken - I have commented out the code and found a keras issue that looks like the
same problem I am hitting. . . I hope it is resovled so we can share model files via S3.

10.60.2 Why the name?

I was describing what this did and my sister-in-law said it reminded her of antivirus but for network defense. So
instead of calling it Anti-Network Exploits it’s just AntiNex or anex for short. Thanks Alli for the name!

144 Chapter 10. API Reference

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

145

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

146 Chapter 11. Indices and tables

CHAPTER 12

What AntiNex is Not

There’s a lot of moving pieces in AI, and I wanted to be clear what is currently not supported:

1. Custom layers or custom Deep Neural Network models - only Keras Sequential neural networks, KerasRegres-
sor, KerasClassifier, Stratified Kfolds, cross validation scoring, Scalers, Add and Dropout are supported. PR’s
are always welcomed!

2. Able to tell what your applications are doing today that is good, non-attack traffic out of the box. AntiNex
requires recording how the network is being used in normal operation + identifying what you want to protect
(do you want tcp traffic only? or a combination of tcp + udp + arp?). It uses the captured traffic to build the
initial training dataset.

3. Exotic attacks - The network pipeline includes the Zed Attack Proxy (ZAP) for OWASP dynamic security
analysis. This tool attacks using a fuzzing attack on web applications. ZAP was used to generate the latest
attack datasets, and there is no guarantee the latest dnn’s will always be effective with attacks I have not seen
yet. Please share your findings and reach out if you know how to generate new, better attack simulations to help
us all. PR’s are always welcomed!

4. Image predictions and Convoluted Neural Networks - it’s only works on numeric datasets.

5. Recurrent Neural Networks - I plan on adding LTSM support into the antinex-utils, but the scores were already
good enough to release this first build.

6. Embedding Layers - I want to add payload deserialization to the packet processing with support for decrypting
traffic, but the dnn scores were good enough to skip this feature for now.

7. Adversarial Neural Networks - I plan on creating attack neural networks from the datasets to beat up the trained
ones, but this is a 2.0 feature at this point.

8. Saving models to disk is broken - I have commented out the code and found a keras issue that looks like the
same problem I am hitting. . . I hope it’s fixed soon so we can share model files via S3.

147

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

148 Chapter 12. What AntiNex is Not

CHAPTER 13

Disclaimers and Legal

1. This is a tool that requires capturing your network traffic to be effective. I am not legally responsible for any
damaging or incriminating network traffic you record.

2. I am not legally responsible for where you deploy this tool. It is meant to help educate how to defend.

3. This is still an emerging technology, and I am not claiming it will work to defend everything out there on the
internet. It works very well for predicting when an attack using OWASP fuzzing attacks are targeting web
applications. I am not legally responsible if you run this and you still get hacked, lose data, lose your job,
lose your money, destroyed personal property or anything worse. I built it to educate how to build your own
deep neural networks to defend. It will forever be an ongoing battle and arms race with malicious actors on the
internet trying to beat every claimed-unbeatable fortress.

149

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

150 Chapter 13. Disclaimers and Legal

Python Module Index

d
drf_network_pipeline.job_utils.build_task_request,

138
drf_network_pipeline.job_utils.build_task_response,

139
drf_network_pipeline.job_utils.handle_task_method,

139
drf_network_pipeline.job_utils.run_task,

140
drf_network_pipeline.pipeline.build_worker_result_node,

136
drf_network_pipeline.pipeline.consts,

136
drf_network_pipeline.pipeline.create_ml_job_record,

136
drf_network_pipeline.pipeline.create_ml_prepare_record,

136
drf_network_pipeline.pipeline.models,

143
drf_network_pipeline.pipeline.process_worker_results,

137
drf_network_pipeline.pipeline.utils, 137
drf_network_pipeline.sz.ml, 141
drf_network_pipeline.sz.user, 140
drf_network_pipeline.users.models, 144

151

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

152 Python Module Index

Index

B
build_task_request() (in module

drf_network_pipeline.job_utils.build_task_request),
138

build_task_response() (in module
drf_network_pipeline.job_utils.build_task_response),
139

build_worker_result_node() (in module
drf_network_pipeline.pipeline.build_worker_result_node),
136

C
convert_to_date() (in module

drf_network_pipeline.pipeline.utils), 137
create() (drf_network_pipeline.sz.ml.MLJobResultsSerializer

method), 142
create() (drf_network_pipeline.sz.ml.MLJobsSerializer

method), 141
create() (drf_network_pipeline.sz.ml.MLPrepareSerializer

method), 141
create() (drf_network_pipeline.sz.user.UserSerializer

method), 140
create_ml_job_record() (in module

drf_network_pipeline.pipeline.create_ml_job_record),
136

create_ml_prepare_record() (in module
drf_network_pipeline.pipeline.create_ml_prepare_record),
136

D
delete() (drf_network_pipeline.sz.ml.MLJobResultsSerializer

method), 142
delete() (drf_network_pipeline.sz.ml.MLJobsSerializer

method), 142
delete() (drf_network_pipeline.sz.ml.MLPrepareSerializer

method), 141
delete() (drf_network_pipeline.sz.user.UserSerializer

method), 140
drf_network_pipeline.job_utils.build_task_request (mod-

ule), 138

drf_network_pipeline.job_utils.build_task_response
(module), 139

drf_network_pipeline.job_utils.handle_task_method
(module), 139

drf_network_pipeline.job_utils.run_task (module), 140
drf_network_pipeline.pipeline.build_worker_result_node

(module), 136
drf_network_pipeline.pipeline.consts (module), 136
drf_network_pipeline.pipeline.create_ml_job_record

(module), 136
drf_network_pipeline.pipeline.create_ml_prepare_record

(module), 136
drf_network_pipeline.pipeline.models (module), 143
drf_network_pipeline.pipeline.process_worker_results

(module), 137
drf_network_pipeline.pipeline.utils (module), 137
drf_network_pipeline.sz.ml (module), 141
drf_network_pipeline.sz.user (module), 140
drf_network_pipeline.users.models (module), 144

G
get() (drf_network_pipeline.sz.ml.MLJobResultsSerializer

method), 142
get() (drf_network_pipeline.sz.ml.MLJobsSerializer

method), 142
get() (drf_network_pipeline.sz.ml.MLPrepareSerializer

method), 141
get() (drf_network_pipeline.sz.user.UserSerializer

method), 140

H
handle_task_method() (in module

drf_network_pipeline.job_utils.handle_task_method),
139

handle_worker_results_message() (in module
drf_network_pipeline.pipeline.process_worker_results),
137

L
lookup_user() (drf_network_pipeline.sz.user.UserSerializer

153

AntiNex - Deep Neural Networks for Defense Documentation, Release 1.0.0

method), 140

M
MLJob (class in drf_network_pipeline.pipeline.models),

143
MLJob.DoesNotExist, 143
MLJob.MultipleObjectsReturned, 143
MLJobResult (class in

drf_network_pipeline.pipeline.models), 143
MLJobResult.DoesNotExist, 143
MLJobResult.MultipleObjectsReturned, 143
MLJobResultsSerializer (class in

drf_network_pipeline.sz.ml), 142
MLJobsSerializer (class in drf_network_pipeline.sz.ml),

141
MLPrepare (class in drf_network_pipeline.pipeline.models),

143
MLPrepare.DoesNotExist, 143
MLPrepare.MultipleObjectsReturned, 143
MLPrepareSerializer (class in

drf_network_pipeline.sz.ml), 141

P
process_worker_results() (in module

drf_network_pipeline.pipeline.process_worker_results),
137

R
run_task() (in module

drf_network_pipeline.job_utils.run_task),
140

U
update() (drf_network_pipeline.sz.ml.MLJobResultsSerializer

method), 143
update() (drf_network_pipeline.sz.ml.MLJobsSerializer

method), 142
update() (drf_network_pipeline.sz.ml.MLPrepareSerializer

method), 141
update() (drf_network_pipeline.sz.user.UserSerializer

method), 141
User (class in drf_network_pipeline.users.models), 144
User.DoesNotExist, 144
User.MultipleObjectsReturned, 144
UserSerializer (class in drf_network_pipeline.sz.user),

140

154 Index

	Deep Neural Networks for Defending Software Systems
	What is this?
	Quick Start
	Deploy on OpenShift Container Platform
	Local Deployment with Docker Compose
	Migrate the DB
	Train the Django Neural Network with 99.8% Accuracy
	Get the Accuracy, Training and Prediction Results
	Make Predictions with Your New Pre-trained Neural Network
	Get the New Prediction Records and Results

	API Examples
	AntiNex API Examples
	AntiNex Python Client within a Jupyter Notebook
	Using Curl
	Prepare a Dataset
	Train a Deep Neural Network with a Dataset
	Debugging
	AntiNex Stack Status

	More Included App URLs
	Jupyter Slides on How the Analysis Works
	Django REST API with Swagger
	Django-hosted Sphinx Docs
	Jupyter
	Browse the Postgres DB with pgAdmin4

	So why does this matter?
	How does it work?
	Components
	Network Pipeline
	REST API
	AntiNex Core

	Additional Components
	AntiNex Client
	AntiNex Utils

	API Reference
	Deploying a Distributed AI Stack to Kubernetes on CentOS
	Getting Started
	Validate
	Deploy Redis and Postgres and the Nginx Ingress
	Start Applications
	Run a Database Migration
	Add Ingress Locations to /etc/hosts
	Using the Minio S3 Object Store
	Using the Rook Ceph Cluster
	Create a User
	Deployed Web Applications
	View Django REST Framework
	View Swagger
	View Jupyter
	View pgAdmin
	View Minio S3 Object Storage
	View Ceph
	View Splunk
	Training AI with the Django REST API
	Train a Deep Neural Network on Kubernetes
	Get the AI Job Record
	Get the AI Training Job Results
	Standalone Deployments
	Deploy Redis
	Deploy Postgres
	Deploy pgAdmin
	Deploy Django REST API
	Deploy Django Celery Workers
	Deploy AntiNex Core
	Deploy Jupyter
	Deploy Splunk
	Searching in Splunk
	Search using Spylunking
	Find Django REST API Logs in Splunk
	Find Django Celery Worker Logs in Splunk
	Find Core Logs in Splunk
	Find Jupyter Logs in Splunk
	Deploy Nginx Ingress
	View Ingress Nginx Config
	View a Specific Ingress Configuration
	Deploy Splunk
	Deploy Splunk-Ready Applications
	Create your own self-signed x509 TLS Keys, Certs and Certificate Authority with Ansible
	Deploying Your Own x509 TLS Encryption files as Kubernetes Secrets
	Deploy Cert Manager with Let’s Encrypt
	Stop the Cert Manager
	Troubleshooting
	Customize Minio and How to Troubleshoot
	Ceph Troubeshooting
	AntiNex Stack Status
	Reset Cluster
	Development
	Testing
	License
	AntiNex on OpenShift Container Platform
	Source Code - ML Pipeline
	Source Code - Job Helpers
	Source Code - Django Rest Framework Serializers
	Source Code - Database Models
	Frequently Asked Questions

	Indices and tables
	What AntiNex is Not
	Disclaimers and Legal
	Python Module Index

